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Abstract

We consider the use of Lagrange manifolds to construct viscos�
ity solutions of �rst order Hamiltonian�Jacobi equations� Recent
work of several authors is indicated in which the essential underly�
ing structure consists of a Lagrange manifold on which �� the desired
Hamiltonian function vanishes and �� the canonical ��form p � dx of
classical mechanics has an integral S�x� p�� We explore the proposi�
tion that a viscosity solution W �x� of the Hamiltonian�Jacobi equa�
tion is obtained by minimizing the function S over points in the
Lagrange manifold that project to the state x� We prove that the
function W �x� produced by this construction is necessarily a viscos�
ity supersolution	 and if Lipschitz is also a subsolution� Elementary
examples illustrate the construction	 including situations in which
the subsolution property fails� Connections with Riccati PDEs	 L��
gain in nonlinear systems	 small�noise quasipotentials	 and simple
variational examples are all described�

� Introduction

Hamilton�Jacobi equations of the form

DtW �t� x� �H�t� x�DxW �t� x�� � � �	
	�

or

H�x�DW �x�� � � �	
��

arise naturally as descriptions of value functions associated with control or
variational problems� or di
erential games
 It is typical to de�ne W as the
value function of a control problem and then characterize it as a solution
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of �	
	� or �	
��
 Since such functions W ��� are generally nonsmooth� the
equations must be understood in a weak sense
 The notion of viscosity
solutions �		� has been developed for this purpose

The classical method of characteristics� on the other hand� describes

smooth solutions of these equations in terms of a family of trajectories of
the Hamiltonian system

�xt � Hp�xt� pt�� �pt � �Hx�xt� pt� �	
��

associated with H 
 One is typically led to consider a particular family
of these trajectories� making up what is known as a Lagrange manifold
M in �x� p��space
 Recently several authors have exploited this Lagrange
manifold structure in variational or control contexts for which viscosity
sense solutions are generally called for

Our purpose in this paper is to consider how �continuous� viscosity solu�

tions result directly from the Lagrange manifold structure� in the absence
of any control or variational interpretation
 Control and�or variational
problems certainly motivate most interest in viscosity solutions� and have
been the context in which many aspects have been previously studied
 It
is no surprise that most of our conclusions below are familiar facts in the
context of� say� Bolza problems in the calculus of variations
 �See �		� for a
nice summary of classical results for simple problems� or ��� and references
for recent work
� Our purpose here is not to o
er new results in that highly
developed subject� but to explore the extent to which some of the famil�
iar features of those problems follow from the Lagrange manifold structure
alone� apart from any variational interpretation
 The main artifact of the
control�theoretic motivation will be the assumption that H�x� p� is convex
in p
 �This excludes problems arising in di
erential games� however
�

��� Terminology and classical characteristics

Our analysis will take place in phase space� which consists of all �x� p� �
IRn� IRn
 The x component is called the state and p is the costate �some�
times momentum�
 We assume throughout that H�x� p� is a C� function
de�ned on phase space
 In Section � we will add the assumption that
H is convex in p for each x� but that is not needed initially
 A solution
�xt� pt� of �	
�� is called a bicharacteristic
 The state component xt of a
bicharacteristic is called a characteristic or extremal

A brief summary of the classical method of characteristics will intro�

duce our point of view
 Suppose V �x� is a classical �C�� solution to �	
��

Associated with V ��� is the following n�dimensional submanifold of phase
space�

M � f�x� p� � p � DV �x�g�

�
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�DV �x� denotes the vector of partial derivatives of V at x
 For V �t� x�
depending on a time variable as well� DtV denotes �V��t while DxV is the
vector of partial derivatives with respect to xi
 Hp and Hx in �	
�� are the
vectors of partial derivatives of H with respect to the xi and pi
� Equation
�	
�� says that

H�x� p� � �� all �x� p� � M� �	
��

In addition�M has the property thatZ
p � dx is independent of path onM� �	
��

Indeed� if �xt� pt�� t � ��� 	� is a closed �piecewise smooth� path onM� then
pt � DV �xt� and so

R �

 pt �dxt � V �x���V �x
� � �
 This independence of

path is what it means to say thatM is a Lagrange manifold
 �In general
a Lagrange manifold need only have this property locally� see �	��
 Here�
sinceM is a graph over state space� the independence of path is global
�
Another important feature of M is its invariance with respect to the

Hamiltonian system �	
��
 To see this consider any �x
� p
� �M and let xt
be the solution of �xt � Hp�xt� DV �xt�� with the selected initial value x


De�ne pt � DV �xt�
 Then di
erentiating �	
�� with respect to x produces
an identity �the Riccati PDE below� which implies �pt � �Hx�xt� pt�
 This
produces the solution of �	
�� through the prescribed �x
� p
� � M in a
way that makes �xt� pt� �M manifest

Conversely� givenM with these properties� a solution of �	
�� is deter�

mined �up to a constant� by

V �xT �� V �x
� �

Z T




pt � dxt� �	
��

where �xt� pt� is any piecewise smooth curve on M joining x
 to xT �not
necessarily a solution of �	
���
 The classical method of characteristics is
essentially to �nd V by constructingM
 If some kind of boundary data is
prescribed for �	
��� that data often determines a subset � ofM
 By then
including the solutions of �	
�� for all �x
� p
� � � one hopes to obtain a
suitable manifoldM
 The problem is that the resultingM may fail to be
a graph p � p�x� over state space� for a given x there may be more �or less�
than one p with �x� p� �M so that V �x� is multiple�valued �or unde�ned�

If� however� one can identify a pieceM
 �M which is a graph over some
domain �
 � IRn� then at least the construction will produce a solution of
�	
�� for x � �



��� Lagrange manifold properties

The properties �	
�� and �	
�� of M cited above are not limited to the
�ideal� situation in which M is a graph over state space
 Rather they

�
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are very natural properties to expect of M in general� because they are
associated with fundamental invariance properties of Hamiltonian systems

To be concrete� suppose thatM is a smooth manifold� made up of a family
of bicharacteristics �	
��� and that there is an open subset M
 � M in
which �	
�� and �	
�� hold and through which every bicharacteristic onM
passes
 �This is common in the applications to be cited shortly� in whichM
is often taken to be the unstable manifold of a critical point of �	
��
� An
elementary invariance property of �	
�� is that H�xt� pt� is constant along
every bicharacteristic
 It follows that �	
�� extends fromM
 to all ofM

A more profound invariance property is that �	
�� preserves the di
erential
��form

d�p � dx� � dp � dx �
nX
i��

dpi � dxi�

�See �	�
� This means that if �
 is a two�dimensional surface in phase space�
bounded by a simple closed curve �
� and we let �	
�� transport �
 through
t time units to obtain a new two�dimensional surface �t� bounded by the
simple closed curve �t� thenZ

��

dp � dx �

Z
�t

dp � dx�

Stokes� formula says that for each t


Z
�t

dp � dx �

Z
�t

p � dx�

Thus if the line integral
R
�t
p � dx vanishes for t � � then it does for all t


Consider a given �x� p� �M
 There exists a bicharacteristic with �x
� p
� �
M
 and �xt� pt� � �x� p� for some t
 �	
�� maps M
 to a neighborhood
Mt � M of �x� p�
 If �t is any closed path in Mt then

R
�t
p � dx �R

��
p �dx � �� since �
 is inM

 The point is that the �local� independence

of path of
R
p �dx is inherited byM from that property in the initial section

M

 Notice from Stokes� formula that the local path independence onM
is equivalent to the property that dp� dx vanishes on TM
 This� and that
M has dimension n� is the usual de�nition of a Lagrange manifold
 See
�	� and �	��
 In general� a Lagrange manifold only has the independence
of path property in su ciently small neighborhoods� not globally
 �See
Example �
	
	 of the next section
� For our purposes it is essential that
this independence of path in fact be global

Suppose then that we do indeed have a manifoldM satisfying �	
�� and

�	
��� but not necessarily the graph of a function p � p�x� over state space

The global independence of path means that there is a smooth function

�
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S�x� p� de�ned �up to a constant� onM by

S�xT � pT � � S�x
� p
� �

Z
pt � dxt� �	
��

where the line integral is over any piecewise smooth curve �xt� pt�� t � ��� T �
onM
 This is abbreviated as

dS � p � dx onM�

We propose the following simple formula as a natural candidate for a vis�
cosity solution of �	
���

W �x� � inffS�x� p� � p such that �x� p� � Mg
� inf

p��x�p��M
S�x� ��� as it is denoted below� �	
��

It is the veracity of this proposition that we explore in this paper
 We
emphasize that this point of view makesM the fundamental object under�
lying the proposed viscosity solution
 We will assume we haveM in hand
�satisfying the technical hypotheses outlined in the next section�

We now describe brie!y some previous studies that have exploited this

Lagrange manifold point of view


��� Riccati equations

The recent paper of C
 Byrnes ��� provides a nice discussion of the La�
grange manifold structure of the family of extremals determined by the
maximum principle in basic control problems
 The focus is on the Riccati
PDE� viewed as a nonlinear generalization of the matrix equations of linear
systems theory
 The Riccati PDE turns out to be another expression of
the invariance ofM with respect to the Hamiltonian !ow� but one which
is valid only whereM is a graph over state space
 In our context� ifM is
given by p � p�x�� the Riccati PDE would be

Hx�x� p�x�� �
�p�x�

�x
Hp�x� p�x�� � ��

which is the same as �p � �Hx in the bicharacteristic equations
 We note

that the Lagrange property ofM is equivalent to the symmetry of �p�x�
�x
�

and di
erentiating H�x� p�x�� � � with respect to x implies Hx��
�p
�x
�THp


Thus the Riccati equation is a consequence of �	
�� and �	
�� above
 In
general� when M is not a graph� ��� calls M a �weak solution� of this
equation
 Generalizations of the Riccati equation are possible in such cir�
cumstances� by using some of the pj instead of xj as independent variables


�
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See the discussion at the end of Section � on invariance with respect to the
Hamiltonian !ow

One of the primary contributions of the Lagrange manifold point of view

has been �geometric� existence proofs� based on takingM to be a stable �or
unstable� invariant manifold associated with the Hamiltonian system �	
���
as mentioned brie!y above
 The use of invariant manifold theory to provide
existence results� in particular the construction of solutions by takingM to
be the stable�unstable manifold of the appropriate Hamiltonian system �in
time independent settings�� is described and traced to work of Brunovsky
��� and Lukes �	�� in the 	"��s
 Numerous other references in the control
theory literature are cited
 Byrnes also notes that Burgers� equation is
a particular instance of the Riccati PDEs he considers
 This connection
with scalar conservation laws goes back many years� as we will comment
in Section �


��� L��gain of input�output systems

Nonlinear systems theory o
ers a particular context in which the e
ort to
construct viscosity solutions from Lagrange manifolds is natural in light of
recent work
 Consider a control system

�xt � f�xt� � g�xt�ut�

The control ut � IRm �locally L�� is viewed as an input and a function
yt � h�xt� is considered as the output
 Assume f���� g��� and h��� are
C� with appropriate dimensions� and that x � � is an equilibrium of the
uncontrolled system� f��� � �� h��� � �
 The goal is to establish a bound
� on the L��gain of the map u� 	
 y�
 A
 J
 van der Schaft ���� has for�
mulated a version of this problem which is equivalent to the existence of a
nonnegative function V �x� satisfying V ��� � � and obeying the Dissipation
Inequality�

V �xT �� V �x
� � 	
�

Z T




��jutj� � jh�xt�j� dt� �	
"�

for all controlled trajectories xt
 The appropriate Hamiltonian �see Sec�
tion �� is

H�x� p� �
	

�
���p � g�x�g�x�T p� p � f�x� � 	

�
jh�x�j��

If V is smooth� �	
"� is equivalent to the di
erential inequality

H�x�DV �x�� � �� �	
	��

Van der Schaft shows how appropriate controllability and observability
assumptions imply that the stable manifold of �	
�� for the equilibrium

�
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��� �� is the graph of a smooth function over state space in a neighborhood
of ��� ��� providing �locally� the existence of a classical solution of �	
		�
below
 This provides a local veri�cation of L��gain � �� holding for paths
limited to the domain �
 in which the solution V so constructed is smooth

The limitation to smooth functions V is too stringent� however
 M


James �	�� has shown that for a lower semicontinuous V ���� �	
"� is equiv�
alent to the viscosity sense inequality

H�x�D�V �x�� � ��

Here D�V �x� is the usual set of subdi
erentials of V at x
 �See Fleming
and Soner �		� for this and other background on viscosity notion solutions
�
We use the notation �H�x�D�V �x�� � �� above to mean H�x� p� � � for
all p � D�V �x�
 In the usual terminology� this is equivalent to saying that
V is a viscosity supersolution to the equation

�H�x�DV �x�� � �� �	
		�

Moreover� results of Ball and Helton ��� and Soravia ���� imply that the
minimal nonnegative function satisfying �	
"� �the available storage func�
tion # see Section �� is in fact a viscosity solution of �	
		�
 The point
is that �	
		� should be considered in the viscosity sense
 Even though
van der Schaft only considered smooth solutions� �	
�� provides a natural
extension of his construction which o
ers the prospect of being a viscosity
solution

We note that �	
		� is not of the form �	
�� that we are considering

here� because �H�x� �� is concave rather than convex
 We will explain in
Section � how our recipe �	
�� translates in this case to

V �x� � sup
p��x�p��M

S�x� ��

as a construction of solutions to �	
		�
 Section � below is devoted to this
particular application


��� Quasipotentials in small noise asymptotics

The Lagrange manifold structure has also been exploited in the study of
the quasipotential functions which arise in the study of small Brownian
perturbations of a dynamical system �	��
 The equations there can be
formulated as special cases of those for the the L��gain problem above
 In
fact take g��� � I � h��� � � and � � 	
 The control system is then

�xt � f�xt� � ut� �	
	��

�
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and the Hamiltonian becomes

H�x� p� �
	

�
jpj� � p � f�x��

Assume that � is an exponentially stable critical point for the uncontrolled
system �xt � f�xt�
 The original Wentzel�Freidlin quasipotential W �	�� is
de�ned by

W �xT � � inf
x��


Z T




	

�
jutj� dt� �	
	��

The in�mum is over all T � � and controlled paths xt � ��� T �
 IRd which
join x
 � � to the speci�ed xT and have ut � L�
 �In the language of dis�
sipative systems� W so constructed is generally called the required supply
function
 In contrast to the available storage function� the required supply
typically provides the maximal solution of the Dissipation Inequality �	
"�
�
Day and Darden �	�� showed �with some growth assumptions on f�x�� that
W is given by our recipe �	
�� using the unstable manifoldM for the equi�
librium at ��� �� of the Hamiltonian system
 The terminology of Lagrange
manifolds was not used in �	��� but is none the less the structure that was
exploited
 The smoothness of W in a neighborhood of � was obtained as a
consequence
 A few years later Perthame ��	� showed that W is a viscosity
solution of �	
��
 Thus for the Wentzel�Freidlin quasipotential speci�cally�
we know that �	
�� does indeed produce a viscosity solution� by virtue of
the combined results of �	�� and ��	�
 More recently Day �"� reworked the
same kind of analysis� but takingM to be the stable manifold associated
with a periodic orbit of �xt � b�xt�� to produce a di
erent quasipotential
function �solving H�x��DW �x�� � �� and establishing smoothness in a
neighborhood of the orbit

Maier and Stein �	"� also consider the same quasipotential function

�	
	�� in their studies of small noise phenomena
 They too observe its rela�
tion to the unstable manifold and recognize that the possibility of a given x
having multiple p with �x� p� � M posed a problem for classical solutions

However� the consideration of viscosity solutions to the Hamilton�Jacobi
equation was not part of their discussion


��� Overview

General hypotheses for our treatment and their implications are presented
in Section �
 Some elementary examples are o
ered to clarify �	
�� above
and certain technical issues
 In Section � we show that �	
�� always pro�
duces a lower�semicontinuous supersolution of �	
��� under the hypotheses
of Section �
 �	
�� can fail to produce a subsolution of �	
��� as the exam�
ples show
 We establish some simple results on the regularity of W and

�
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prove that it is a subsolution under an additional Lipschitz continuity as�
sumption
 Section � presents two examples in which W ��� is discontinuous�
clarifying the discrepancy between the hypotheses of Section � and features
of a typical variational problem
 Finally� in Section � we look more closely
at the application to L��gain estimation


� Fundamentals

The purpose of this section is to de�ne concisely the basic objects of our
consideration� establish some of their fundamental properties� and identify
those additional hypotheses under which we will consider

W �x� � inf
p��x�p��M

S�x� �� ��
	�

as a possible viscosity solution
 We also present some elementary examples
to illustrate ��
	� and some aspects of the hypotheses


��� Basic hypotheses

We are assuming that the HamiltonianH�x� p� is a smooth �C�� real�valued
function de�ned on phase space
 In the sections to follow we will assume
that H is convex in p for each x
 This is natural in many situations� but
unnatural in others
 In particular nonconvex H are important in nonlinear
H� control
 So at least in the present section we allow the possibility of a
nonconvex H 
 However our discussions of the viscosity sub�supersolution
properties below will depend on a convexity hypothesis

We assumeM is a smooth submanifold of phase space �without bound�

ary� satisfying hypotheses �A	� $ �A�� below
 We will elaborate on these
hypotheses in the paragraphs which follow


�A	� H � � at all points ofM

�A�� M is Lagrangian


�A�� p � dx is globally independent of path onM

�A�� M is embedded in phase space


�A�� M is locally bounded


�A�� M covers an open region � of state space and has no boundary points
over ��

"
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The usual de�nition of a Lagrangian manifold M is that it be a sub�
manifold of phase space� of dimension n� such that the di
erential ��form
dp � dx vanishes on its tangent space TM
 See �	�� or �	� for instance
 As
pointed out in the introduction� this is equivalent to local independence
of path of p � dx on M
 An alternate characterization of the Lagrangian
property can be given which will be useful in our discussion
 A general
feature of a Lagrange manifold is that� at any point� some complimentary
selection of state and costate variables will provide a coordinate chart
 �See
�	�� Proposition �
�
� That is� we can �nd I � f	� � � � � ng so that the xi�
i � I and pj � j � Ic provide coordinates forM in some neighborhood of the
prescribed point
 Moreover ��	�� Proposition �
�	� in such a neighborhood
the Lagrange property is equivalent to the existence of a �smooth� gener�
ating function G�xi� pj�� i � I � j � Ic in terms of which M is described
by

xj � � �G

�pj
� j � Ic pi �

�G

�xi
� i � I� ��
��

�Some authors� such as Arnold �	�� call F � �G the generating function�
and the above relations are negated
� Of particular signi�cance for us is
the function de�ned in this neighborhood ofM by

S�x� p� � G�
X
j�Ic

xjpj �

OnM we have� using ��
���

dS �
X
i�I

�G

�xi
dxi �

X
j�Ic

�G

�pj
dpj �

X
j�Ic

�xjdpj � pjdxj�

�

dX
j��

pjdxj � p � dx�

In particular
R
p � dx is independent of paths remaining inside the region

where ��
�� holds
 The description ofM in terms of generating functions
will be a convenient way to describe simple examples
 Note that for n � 	
any smooth curve in phase space �IR�� is a Lagrange manifoldM
 Where
M is of the form p � f�x� a generating function is given by G�x� �

R
f dx�

whereM is the graph of x � ��p�� G�p� � � R � dp is a generating function

����� Example

Consider H�x� p� � x��p��	
 The unit circleM � f�x� p� � x��p� � 	g
is a Lagrange manifold �since n � 	� on which H vanishes
 Thus �A	� and
�A�� are satis�ed


	�
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This example fails to satisfy �A��� however
 That p�dx be globally inde�
pendent of path onM is equivalent to the existence of a single function S
de�ned on all ofM with dS � p � dx
 This is not possible in Example �
	
	�
since integrating p � dx once around the circumference does not vanish
 As
indicated in the introduction� the desiredM is frequently obtained as the
stable �or unstable� invariant manifold of a critical point of the Hamilto�
nian system
 Several authors� ���� �"� and ���� for instance� have noted that
the stable �or unstable� invariant manifold of a hyperbolic critical point
of a Hamiltonian system always has the Lagrangian property
 A su cient
condition for �A�� is thatM be simply connected
 �See �	��� pg
"
�
The term �embedded� in �A�� means that the intrinsic topology of

M� i
e
 that induced by its coordinate charts� is the same as the relative
topology it inherits as a subset of phase space
 There is some genuine
content to this assumption� as the next example illustrates


����� Example

H�x� p� � x	 � x� � �
�p

�� and take M to be the unstable manifold of
the critical point at the origin for the associated Hamiltonian system�
p � x

p
��	� x� for x � 	 and p � 
xp��	� x� for � 	 x � 	
 M

is Lagrangian because it is one�dimensional� and as the unstable invariant
manifold
 However in its intrinsic topology the points p � �xp��	� x� as
x � � do not converge to the origin� while they do in the subspace topology
from IR�
 The embedded hypothesis is thus violated
 In general if the level
set H��f�g contains a homoclinic loop of the associated Hamiltonian sys�
tem� then the full stable �unstable� manifold will not satisfy the embedded
assumption
 However a reduced version ofM� obtained say by removing a
small piece of p � �xp��	� x�� x � � near the origin� will satisfy �A��


x

p

Figure 	� Example �
	
�

It makes sense to consider ��
	� only at states x which are �covered� by
M� i
e
 for which there exists some p with �x� p� � M
 In �A�� we limit our
consideration of ��
	� to an open region � of state space all of whose points
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are covered by M in this sense
 By �boundary points� of M in �A�� we
mean points �x� p� in phase space which occur as limits �x� p� � lim�xn� pn�
with �xn� pn� � M but for which �x� p� ��M
 �In this sense �M � %MnM�
where the closure %M is with respect to the phase space topology
� In �A��
we assume that no such �x� p� � �M has x � �
 The signi�cance of �A��
and �A�� together is this� if xn 
 x � �� �xn� pn� � M for each n and
pn 
 p� then �x� p� � M and �xn� pn� 
 �x� p� in the topology of M

I
e
 in the portion of M over � convergence of �xn� pn� in phase space is
equivalent to convergence inM

Finally we come to the assumption �A�� thatM is �locally bounded
�

By this we mean that for each x
 � � there exists a 
 � � and K 	 �
so that jpj � K for all �x� p� � M with x � B��x
�
 Under �A	� a su �
cient condition would be that H�x� p� 
 �� as jpj 
 � uniformly for x
in compacts
 This is satis�ed in the two preceding examples for instance

Example �
	
� illustrates some of the pathological features possible when
local boundedness fails
 An important implication of local boundedness
is that the in�mum in ��
	� is achieved for every x � �� S is continu�
ous onM� �fxg � IRd�� which is compact by �A�� and the agreement of
phase space andM topologies onM
 The following lemma collects several
consequences of �A	� $ �A�� for future use


Lemma � For every x � � there exists �x� p�� �M such that

S�x� p�� � S�x� p� all other �x� p� �M�

If xn 
 x � � and �xn� pn� � M� then the pn form a bounded sequence
and �x� p� �M for all limit points p of pn�

����� Example

The construction ��
	� is easily illustrated by examples with n � 	 andM
described by

x � ��p��

If � is not monotonic the projection �x� p� � M 	
 x is many�to�one so
that the infp comes into play
 Let &�p� �

R
��p� dp
 S is given onM by

S�x� p� � xp� &�p�� for �x� p� �M�

To be speci�c� consider

&�p� �
	

�
��p� � p��� ��p� � p� p	�

Figure � shows� �rst M � fx � ��p�g in the x� p plane� then S plotted
over the points ofM� and then S plotted as a multiple�valued function of
x �i
e
 p suppressed�
 The graph of the resulting W �x� is easy to pick out
as the curve with a �peak� on the vertical axis
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x

p

x

p

S

x

S

Figure �� Example �
	
�

����� Example

Contrast Example �
	
� with what happens if & is negated�

&�p� � �	
�
��p� � p��� ��p� � �p� p	�

Views of this example are shown in Figure �
 Here the resulting W �x� is
clearly discontinuous
 This is typical of cases in which the graph of x � ��p�
loops back above itself as we move from left to right
 We will refer to this
general con�guration an an �overloop�� and that of Example �
	
� as an
�underloop
�

x

p

x

S

Figure �� Example �
	
�

We note that the Hamiltonian H plays no role in the construction ��
	�

Rather� H is involved in the identi�cation of the appropriate M for a
particular equation �	
�� and boundary conditions
 In Examples �
	
� and
�
	
� we could simply take

H�x� p� � ��p�� x�

which obviously vanishes on M
 This H is not convex in p� however
 In
one �space� dimension clearly no Hamiltonian which is strictly convex in

	�
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p can vanish on a curve M having these over�underloop con�gurations
since the convex function p 	
 H�x� p� would vanish at � distinct p� for x
under the loop
 However we can easily embed these examples in a higher
dimensional context �with convex Hamiltonian� so that the �gures above
occur as one dimensional cross�sections
 Indeed considerM determined by
the generating function

G�x�� p�� � ��	
�
x�p

�
� �&�p��� �

x� � � �G

�p�
� x�p� � ��p���

p� �
�G

�x�
� �	

�
p��

S � x�p� � 	
�
x�p

�
� �&�p���

The Hamiltonian H�x� p� � �
�p

�
� � p� is convex and clearly vanishes on

M
 We note that this Hamiltonian is the same as that associated with the
examples of Section � below


��� Invariance with respect to the Hamiltonian 	ow

The property thatM is invariant with respect to the Hamiltonian system

�x � Hp�x� p�� �p � �Hx�x� p� ��
��

was demonstrated in the introduction� assuming M is described by p �
DV �x� where H�x�DV �x�� � �
 Using generating functions ��
�� the ar�
gument we indicated earlier extends to show the invariance is a general
consequence of �A	� and �A��
 Consider a neighborhood in M in which
xi� i � I and pj � j � Ic provide coordinates� some I � f	� �� � � � � ng� and let
G�xi� pj�� i � I� j � Ic be a generating function� so that in this neighbor�
hoodM is described by ��
��
 In particular onM we can view H�Hx� Hp

as functions of the coordinates xi� pj alone �i � I� j � Ic�
 Through an
initial point on M we can compute a trajectory by solving the system of
n equations for the coordinate variables�

�xi � Hpi � �pj � �Hxj � ��
��

and then use ��
�� to determine the values of the remaining variables xj � pi
of the trajectory on M
 We need to check that the resulting trajectory
onM is a bicharacteristic
 Equations ��
�� are half of the bicharacteristic
equations ��
��� we need to check the equations for the dependent variables
xj and pi
 Writing out H � � using ��
�� we have

� � H�xi�� �G

�pj
�
�G

�xi
� pj�� ��
��
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holding identically as a function of the coordinate variables xi� pj 
 Di
er�
entiating ��
�� with respect to an xi� i � I yields

� � Hxi �
X
j�Ic

�Hxj

��G

�pj�xi
�
X
i��I

Hpi�

��G

�xi��xi
�

which in light of ��
�� and ��
�� is equivalent to

�pi � �Hxi � ��
��

Similarly� di
erentiating ��
�� with respect to a pj � j � Ic produces

� �
X
j��Ic

�Hpj�

��G

�pj��pj
�
X
i�I

Hpi

��G

�xi�pj
�Hpj �

which is equivalent to

�xj � Hpj � ��
��

The equations ��
��� ��
��� and ��
�� show that the trajectory we have
constructed onM through a prescribed initial point is in fact the bichar�
acteristic through the initial point
 This establishes the invariance of M
with respect to ��
��� as claimed


� Continuity and Subsolution Properties

We now assume that H�x� �� is convex and begin to consider

W �x� � inf
p��x�p��M

S�x� ��� x � � ��
	�

as a possible viscosity solution of H�x�DW �x�� � �
 First we show� un�
der the general hypotheses presented in Section �� that W is lower semi�
continuous and is a viscosity supersolution� namely that

H�x� p� � �

for all p in the set of subdi
erentials D�W �x�
 The proof of the superso�
lution property below was communicated by Bill McEneaney� although in
a slightly di
erent form
 A very similar argument was given for Theorem
�
	 of �	��
 Notice that the convexity of H�x� �� is used signi�cantly


Theorem � W ��� is a lower semi�continuous viscosity supersolution of

H�x�DW �x�� � � in ��
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Proof� The lower semi�continuity follows easily by considering sequences
xn 
 x and pn with �xn� pn� � M and W �xn� � S�xn� pn�
 By passing
to a subsequence Lemma 	 implies lim infW �xn� � infp��x�p��M S�x� p� �
W �x�

Consider x
 � � and suppose ���� is C� such that W � � with equality

at x

 Since D
�W �x
� consists of the set of D��x
� for all such ����� we

need to show H�x
� D��x
�� � �
 There exists p
 with �x
� p
� � M and
W �x
� � S�x
� p
�
 For an arbitrary �x� p� � M we have

S�x� p� �W �x� � ��x�� with equality at �x
� p
��

Consider the bicharacteristic �xt� pt� through �x
� p
�
 For t 	 �

Z 


t

D��xs� � �xs ds � ��x
�� ��xt� � S�x
� p
�� S�xt� pt� �

Z 


t

ps � �xs ds�
��
��

Since H�x� p� is convex in p� �xs � Hp�xs� ps� and H�xs� ps� � � we know
that

H�xs� q� � �q � ps� � �xs �H�xs� ps� � �q � ps� � �xs for all q�

Applying this with q � D��xs� and using ��
�� yields� for all t 	 ��

Z 


t

H�xs� D��xs�� ds �
Z 


t

�D��xs�� ps� � �xs ds � ��

The continuity of H�xs� D��xs�� now implies that

H�x
� D��x
�� � ��
completing the proof


We observe that the above proof only used �local� backwards invariance
of � with respect to the bicharacteristics ofM� �xt� pt� � M and x
 � �
implies xt � � for all t � ���� ��� some � � �
 Suppose the closure %� is
likewise �locally� backward invariant and that we can extend the de�nition
��
	� to x � %�
 Then the argument in the proof applies for x
 � �� with
any C� function � such that W �x� � ��x� for all x � %� with equality at
x

 We would conclude that W satis�es Soner�s boundary condition on ��
for problems with state constrained to %�
 �See �		� Section II
	�
�
The subsolution property of ��
	� is more involved
 Indeed it is false in

general under only the hypotheses of Section �
 The shortcoming is that
W �x� so de�ned can easily be discontinuous� as we have seen in Exam�
ple �
	
�
 The notion of viscosity solution does extend to discontinuous
functions
 �See �		� and references
� The subsolution property for dis�
continuous W requires that H�x�D�W ��x�� � � where W � is the upper

	�



LAGRANGE MANIFOLDS AND VISCOSITY SOLUTIONS

semicontinuous envelope of W 
 At a discontinuity D�W ��x� is typically
unbounded� as our examples illustrate
 This makes H�x�D�W ��x�� � �
impossible for Hamiltonians with H�x� p� 
 �� as jpj 
 �� such as
nondegenerate quadratics

Our proof of the subsolution property requires the additional assump�

tion that W is �locally� Lipschitz continuous in �
 Before coming to the
proof itself we will explore some continuity properties of W which do fol�
low from our assumptions in Section �
 To this end we distinguish several
types of points in �
 First are the regular points � x � � for which there is
a unique �x� p� �M giving the minimum of S�

W �x� � S�x� p� 	 S�x� p�� for all �x� p�� � M� p �� p��

�This terminology is standard� see �		� pg
 ��
� The set of all regular points
will be denoted U 
 The points in �nU might reasonably be called multiple
points � since there are multiple �x� p� � M achieving the value W �x�

Let � �M
 IRn be the projection to state space� ��x� p� � x
 A point

x � � is called a caustic point if� there is some �x� p� � M at which the
state projection � is singular �i
e
 has vanishing Jacobian with respect to
any set of coordinates for a neighborhood of �x� p� inM�
 C will denote the
set of caustic points
 We de�ne the set of essential caustics C� to consist
of those x such that � is singular at every �x� p� �M which is minimizing�
W �x� � S�x� p�
 Of course C� � C

We note that if the projection � is nonsingular at �x
� p
� � M� then

the state variables� xi� i � 	� � � � � n provide a coordinate chart in some
neighborhood of �x
� p
�
 Following our discussion in Section �� there exists
a generating function G�x� de�ned in some ball B��x
� about x
 so that so
that the set of �x� p� with x � B��x
� with p � DG�x� is a neighborhood
of �x
� p
� inM� and S�x� p� � G�x� in this neighborhood
 This fact will
be used several times below

The results in the following theorem and corollary are familiar in the

context of variational and control problems� see �		� �Theorem I
	�
� in
particular� and ��� for instance
 Our de�nition of caustic point is related
to the notion of conjugate point
 However the actual de�nition of conju�
gate point makes reference to the subset of state space on which initial
or boundary data is prescribed
 Our hypotheses do not identify any such
distinguished subset of state space or ofM� so we cannot quite de�ne con�
jugate points in the general context of Section �
 Thus the following result
is slightly di
erent than the usual results on the region of strong regularity

Our main point however is not that these features are new� but that they
follow from the general hypotheses in section � apart from any variational
interpretation
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Theorem �

a� U n C� is open� and W ��� is smooth in U n C��
b� W ��� is continuous at every point of � n C��
c� W ��� is locally Lipschitz in the interior of � n C��

Corollary � All discontinuities of W occur at essential caustics�

Proof� Consider x
 � U nC�
 There exists a �unique� �x
� p
� �M which
minimizes S�x
� �� over �x
� p� �M and at which � is nonsingular
 By the
observation just above there exists a smooth G��� de�ned in a neighborhood
of x
 so that p � DG�x� and S�x� p� � G�x� in a neighborhood of �x
� p
�
inM
 Since �x
� p
� is minimizing� W �x
� � G�x
�
 We claim there exists

 � � so that p � DG�x� is the unique minimizer of S�x� �� in M for
each x � B��x
�
 If not� there would exist a sequence of �xn� pn� � M
with xn 
 x
 such that pn minimizes S�xn� �� in M but pn �� DG�xn�

By Lemma 	 the pn are bounded� and any limit point p� � lim pn� has
�x
� p�� � M
 Since W �xn� � S�xn� pn� � G�xn�� we can use the lower
semi�continuity of W ��� to deduce that

G�x
� �W �x
� � lim infW �xn� � � limS�xn� � pn�� � limG�xn� � � G�x
��

Therefore�

W �x
� � G�x
� � limS�xn� � pn�� � S�x
� p���

In other words �x
� p�� is minimizing at x
� which means p� � p
� since by
hypothesis the minimizer at x
 is unique
 It follows then that pn 
 p


Therefore �xn� pn� 
 �x
� p
� in M and so� for all su ciently large n�
�xn� pn� is in the neighborhood of �x
� p
� in which p � DG�x�
 Hence
pn � DG�xn� for all su ciently large n� contrary to our construction
 This
proves the existence of 
 � � so that p � DG�x� is the unique minimizer of
S�x� �� inM for each x � B��x
�� showing both that x
 has a neighborhood
B��x
� contained in U nC�� and that W �x� � S�x� p� � G�x� is smooth in
B��x
�� proving a�

Next� consider x
 � � n C�
 There exists �x
� p
� � M minimizing

S�x
� �� at which � is nonsingular
 Let G�x� be de�ned in a neighborhood
of x
� as described prior to the theorem statement above
 Then since
G�x� � S�x� p� in a neighborhood of �x
� p
� we have

W �x� � G�x�� with equality at x
�

Hence
lim sup
x�x�

W �x� � G�x
� �W �x
��
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showing that W is upper�semicontinuous at x

 Since lower�semicontinuity
holds in general� this proves b�

Now suppose x
 is an interior point of � n C�
 The local boundedness

assumption implies that for some 
�K � � we have

jpj � K for all �x� p� � M with x � B��x
��

For simplicity denote B � B��x
�
 We note that B is convex� and we may
assume B � � n C�
 We will show that

jW �x���W �x��j � Kjx� � x�j� for all x�� x� � B� ��
��

Consider any x� � B
 Since x� �� C� there exists �x�� p�� � M minimiz�
ing S�x�� �� and a smooth G��� de�ned on some B���x�� � B as previously

For any x� � B���x�� we have jDG�x��j � K and so

W �x�� � G�x��

� G�x�� �Kjx� � x�j �W �x�� �Kjx� � x�j� ��
��

Pick a unit vector u and consider the maximal interval � � t � T of t such
that x� � x�� tu � B and ��
�� holds
 It must be that x��Tu � �B� else
we could take x� � x��Tu and repeat the above argument� �nding 
� � �
so that

W �x	� �W �x�� �Kjx	 � x�j for all x	 � B���x���

We could then combine this with ��
�� to �nd that ��
�� also holds for
x	 � x� � �T � t�u� � � t 	 
�� contradicting the maximality of T 
 In this
way we �nd that ��
�� holds for x� along any ray from x� up to �B
 Since
B is convex� this means ��
�� holds for all x�� x� � B
 Interchanging x�
and x� we conclude ��
��� as claimed


Lemma � The set C of all caustics has measure ��

Proof� This is a direct application of Sard�s Theorem
 �See ����
�

We observe that the set of caustics is closed� relative to �� because it
is the image under � of the set of points where the Jacobian of � vanishes

Indeed C � f�x� p� � M � � is singular at �x� p�g is a closed subset ofM

Any x
 � C has a closed neighborhood %B��x
� � �
 Since M is locally
bounded� C�� %B��x���IRd� is compact
 Hence its image C� %B��x
� under �
is closed
 Since x
 � C was arbitrary� it follows that C is closed� relative to
�
 As a result of this and part c� of the theorem above� the points at which
W ��� fails to be Lipschitz is a subset of the caustics and thus has measure �

However� even if we knewW was continuous in �� this would not be enough
to deduce that W is Lipschitz in �
 �Indeed the Cantor function is locally
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Lipschitz in the compliment of the Cantor set� which has measure �� but
is not Lipschitz overall
� The following stronger hypothesis on C� implies
Lipschitz continuity and will be adequate for simple examples� although it
is too strong to be useful in the general case


Lemma � Suppose n � � and C� has no accumulation points� Then W is
�locally� Lipschitz continuous in ��

Note that for n � 	 this result is false� as the overloop of Example �
	
�
illustrates


Proof� The hypotheses imply that C� is closed� so that �nC� is open and
Theorem � c� assures us that W is Lipschitz there
 We need only consider
a neighborhood B��x
� containing a single point x
 of C�
 Repeating the
reasoning of Theorem � b�� it follows that for some K � ��

jW �x���W �x��j � Kjx� � x�j� x�� x� � B��x
� ��
��

provided x
 is not on the line segment joining x� and x�
 If x
 is on this
line segment� introduce x	 close to x
 but o
 the line segment
 Pass to the
limit as x	 
 x
 in

jW �x���W �x��j � Kjx� � x	j�Kjx	 � x�j

to see that ��
�� holds for any x�� x� in the punctured ball B��x
� n fx
g

Hence

w
 � lim
x�x�

W �x�

exists
 Once we show w
 �W �x
� it will follow that ��
�� holds on the full
open ball B��x
�� and the proof of the lemma will be complete
 We know

W �x
� � w
 ��
��

by lower semi�continuity

Let �x
� p
� � M such that S�x
� p
� �W �x
�
 Consider the set Px� �

fp � �x
� p� � Mg
 The local boundedness hypothesis tells us that Px� �
IRn is bounded
 Let p� be a boundary point of Px� whose distance from
p
 is as small as possible
 We must have �x
� p�� � M because otherwise
it would be a boundary point of M over �� contrary to hypothesis �A��

On the other hand� no neighborhood of �x
� p�� inM can be contained in
fx
g� IRd or else p� would be interior to Px� 
 Hence there exits a sequence
of points inM� �xn� pn�
 �x
� p�� with xn �� x

 SinceW �xn� � S�xn� pn�
we can argue that

w
 � limW �xn� � limS�xn� pn� � S�x
� p���

��
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Because no boundary points of Px� are closer to p
 than p�� the line segment
between �x
� p
� and �x
� p�� is contained inM and along it dS � p�dx � ��
so that

w
 � S�x
� p�� � S�x
� p
� �W �x
��

Together with ��
�� this completes the proof


The main result of this section is the following


Theorem � If H�x� p� is convex in p for each x and W �x� is �locally�
Lipschitz continuous in �� thenW is a viscosity solution of H�x�DW �x�� �
� in ��

Proof� We need to show that

H�x� p� � �

for all p in the set D�W �x� of superdi
erentials of W at x
 Frankowska
�	�� showed that for �locally� Lipschitz functions W �

D�W �x� � �W �x��

where �W �x� is the generalized gradient in the sense of Clarke
 Clarke ���
has shown �Theorem �
�
	� that for any set G of Lebesgue measure �

�W �x� � coflimDW �xi� � xi 
 x� xi �� G�DW �xi� convergesg� ��
��

�The �co� indicates the convex hull
� We take

G � %C� � fx � � � W is not di
erentiable at xg�

G does have measure � by the Lipschitz hypothesis� Lemma � and the
observation following it which implies %C� � C
 We claim that for any x
 �
� nG� �x
� p
� � M where p
 � DW �x
� and S�x
� p
� � W �x
�
 Indeed
x
 �� C� means there exists �x
� p
� � M at which � is nonsingular and
S�x
� p
� �W �x
�
 There exists a smooth G�x� de�ned in a neighborhood
of x
 with p
 � DG�x
� and �x�DG�x�� de�nes a neighborhood of �x
� p
�
inM� with G�x� � S�x�DG�x��
 Therefore in this neighborhood we have

W �x� � G�x�

with equality at x

 Since both sides are di
erentiable at x
 it follows that

DW �x
� � DG�x
� � p
�

We already know S�x
� p
� �W �x
� by the choice of p

 This justi�es our
claim


�	
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Consider then any such sequence xi 
 x� xi � G as in ��
��
 We have
�xi� pi� � M where pi � DW �xi� converges to some p
 By Lemma 	�
�x� p� �M
 We conclude that

D�W �x� � cofp � �x� p� � Mg�
�We comment that this fact is in Cannarsa and Soner ���� at least for semi�
convex �or concave� functions� see Def
 �
�� Prop
 �
"
 The same is true of
D�W 
 This provides at a fundamental level the observation of Ball and
Helton ��� about the equivalence of H�x�D�W �x�� � �� which results from
time�reversal in the argument of M
 James
� Since H�x� p� � � onM and
H�x� �� is convex� it follows that

H�x� p� � �
for all p � D�W �x�� which completes our proof


� Examples with Discontinuity

Our intent has been to develop viscosity solution properties directly from

W �x� � inf
p��x�p��M

S�x� p� ��
	�

under the basic hypotheses of Section �� divorced from any variational
interpretation
 The obvious shortcoming of those hypotheses is that they
do not imply the continuity that is needed in Theorem �
 In this section
we provide two examples which o
er some insight into how discontinuities
can arise in ��
	�� and an important feature of variational problems that
our basic hypotheses fail to capture

Consider time�dependent equations of the following form in one space

dimension �x � IR���

DtW �H�DxW � � �� W ��� x� � &�x�� ��
��

Assume that H��� is a proper convex function in the sense of convex anal�
ysis� with conjugate function

L�v� � sup
p
fp � v �H�p�g� ��
��

and moreover that both L��� and H��� are �nite�valued and su ciently
smooth
 Assume that &��� is smooth with &��x� bounded
 We note that
time�dependent equations such as this may be put in the form �	
�� by
augmenting the state and costate variables

y � �t� x�� q � �
� p�

��
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and de�ning an augmented Hamiltonian�

H��y� q� � 
 �H�p�� ��
��

The Cauchy problem ��
�� has been thoroughly studied� since it de�
scribes the value function for the following basic variational problem�

W �t� x� � inf
xt�x

�
&�x
� �

Z t




L� �xs� ds

�
� ��
��

�The in�mum is over xs � ��� t�
 IR� which are absolutely continuous with
the prescribed terminal position xt � x
� An e cient discussion can be
found in Fleming and Soner �		�� Sections I
�� I
"
 In particular� for t � �
��
�� de�nes a Lipschitz continuous function and the in�mum is achieved
by one of the bicharacteristic curves that will make up M below� so that
for t � � ��
�� de�nes the same W �t� x� that we would construct following
��
	�
 The variational representation implies Lipschitz continuity
 E
 Hopf
�	�� studied ��
�� long ago
 Among other things� he showed that the formula

W �t� x� � inf
z
sup
p
f&�z� � p � �x� z�� tH�p�g

provides a generalized solution to ��
�� which is Lipschitz
 Later� after the
theory of viscosity solutions was in place� Bardi and Evans ��� revisited
Hopf�s formula� showing that it provides the unique continuous viscosity
solution for t � � to the Cauchy problem
 One can check that Hopf�s for�
mula also reduces to ��
	� above in the context of the augmented variables
��
��

The manifold M that we would construct in solving this problem is

exactly what results from the method of characteristics
 Start with the
initial manifold consisting of t � �� p � &��x� and 
 � �H�p�
 Take these
as initial conditions for the bicharacteristic system associated with H��
which reduces to

�pt � ��
�xt � H ��pt��

t � �H�pt��

M is the union of points on this family of bicharacteristic curves
 Note
that �xt and pt are constant
 For v � �xt the supremum in ��
�� is achieved
by p � pt �since �xt � H ��pt��
 Therefore� the function S associated with
M as in �	
�� obeys the following along a bicharacteristic�

dS � qt � dyt � pt � dxt �H�pt� dt � �ptHp�pt��H�pt��dt � L� �xt�dt�
��
��

We can therefore express the function S onM by

S�t� xt� 
t� pt� � &�x
� �

Z t




L� �xs� ds

��
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along the bicharacteristic �xt� pt�
 This makes plain the correspondence of
��
	� with ��
�� for t � �

The variational interpretation of W �t� x� is limited to t � �� while the

construction of M� S��� and W ��� by ��
	� extend equally well to t 	 �

The hypotheses of Section � remain satis�ed
 We have lost the variational
interpretation for t 	 � and� as our �rst example will show� we can lose
continuity of W ��� as well


��� Examples

We now o
er two examples� both using H�p� � �
�p

�
 The corresponding
Lagrangian is L�v� � �

�v
�
 We consider two choices of &
 The resulting

manifoldM is nicely parameterized by t� x

 Since the augmenting costate
variable is always given by 
 � �H�p�� only t� x� p and S are included in
the plots below


����� An example with upstream discontinuity

Consider &�x� � � arctan�x� � x
 &� is bounded� in accord with the hy�
potheses above
 The resulting manifoldM is illustrated in Figure �� and
in Figure � using di
erent t cross�sections
 The bottom row in each �gure
displays S�t� �� as a multivalued function of x� for the corresponding t val�
ues
 As t increases the cross�section undergoes a �shearing� motion� with
the upper half�plane moving to the right and the lower to the left
 By the
time t�	
� the cross�section of M has formed an underloop� producing a
nondi
erentiable but Lipschitz functionW � in accord with the implications
of the variational interpretation
 However for t 	 � we see that an overloop
develops� yielding a discontinuous W for t 	 �	

Considering t 	 � is obviously inappropriate in terms of the variational

problem
 In terms of the the basic hypotheses of Section � this example
suggests that the direction of the bicharacteristic !ow is signi�cant for the
continuity of W ���
 We might hope that continuity of W �but not smooth�
ness� will be maintained as we follow the bicharacteristics in their forward
or �downstream� direction� but as we move �upstream� we are more likely
to encounter discontinuities and thereby lose the viscosity subsolution prop�
erty
 The next example shows that in fact it is possible to lose continuity
in the �downstream� direction as well


����� An example without local boundedness

Now take &�x� � �
� �log�x

� � 	�� x��
 We note immediately that &��x� �
�x�
x��� is unbounded
 The variational argument that W ��� is Lipschitz for
t � � no longer applies
 However the construction of M� S��� and then
W ��� from ��
	� can still proceed
 Figure � again displays t cross�sections

��
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Figure �� Manifold Perspectives for Example �
	
	

ofM on the top and the corresponding S�t� �� on the bottom row
 We see
that a pair of underloops has formed by t � �"�� resulting in a nonsmooth
but continuous W 
 However at t � 	 an �inversion� takes place� with the
p
 
� tails ofM passing through the vertical axis
 M violates the local
boundedness hypothesis �A�� at this point
 An overloop forms at this time�
so that W develops a discontinuity
 This discontinuity persists �although
diminishing in size� as t continues to increase

It turns out that local boundedness does hold for the portion ofM with

� 	 t 	 	
 This example illustrates that our local boundedness hypothesis
is important for the continuity of W ���� but that it is not a property that
propagates forward or �downstream� onM
 We pointed out in Section �
that global boundedness does follow if the Hamiltonian has the property
H�x� p� 
 � as jpj 
 �
 In time dependent settings the augmented
Hamiltonian ��
�� does not have this property
 In the speci�c context of

��
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t=-2 t=0 t=1.2

Figure �� Cross�Sections for Example �
	
	

t=0 t=.95 t=1.2

Figure �� Example �
	
�

��
��� the assumption of bounded &��x� is a spatially global version �A��
which then does propagate downstream


��� Comments on the time�dependent equation

Byrnes ��� noted the connection between the case of H�p� � �
�p

� above
and Burgers� equation
 His focus was on the Riccati PDE� which describes
M under the assumption that it is a graph over �t� x�� p � p�t� x� �and

 � �H�p�t� x���
 In the present setting the Riccati PDE would take the
form

�p

�t
�

�p

�x
�Hp�p� � ��

In higher dimensions the symmetry of �p��x follows from the Lagrange
property ofM
 This makes the Riccati PDE equivalent to the scalar con�

��
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servation law

�p

�t
�DxH�p�t� x�� � �� ��
��

For H�p� � �
�p

� speci�cally we get Burgers� equation
 The formation
of shocks for ��
�� corresponds to the folding of M over state space� so
that it is no longer a graph
 In the context of ��
	� this corresponds to
the formation of nonsmooth points� as illustrated in the examples
 In the
context of ��
�� it is natural to expect the minimizing p� as a function of
�t� x�� to provide a weak solution �see �����
 In fact the very construction
��
	� has been the basis of existence arguments for scalar conservation
laws since the work of Hopf in the 	"���s
 Under appropriate technical
conditions it produces the unique weak solution satisfying the usual entropy
condition
 �See Lax �	��
� The Rankine�Hugoniot jump condition �p� dx�
�H � dt � � and �equal area rule� are natural consequences


� Nonlinear L��Gain Calculations

We return in this �nal section to consider the implications of our results for
the problem of L��gain calculation� introduced in Section 	
 As pointed out
there� van der Schaft ����� ���� has considered the use of Lagrange manifold
constructions in this context� but only in terms of smooth solutions of ��
	��
below in some domain �
 We will obtain some of the same results under
weaker hypotheses for which the construction yields a viscosity solution

The reader can refer to the papers of van der Schaft for more background
on this topic and its relation to H� control

Recall from Section 	 that the problem concerns a control system

�xt � f�xt� � g�xt�ut ��
	�

in which ut � IRm �locally L�� is viewed as an input and the observed
output is yt � h�xt�
 We will call xt solving ��
	� for some ut a controlled
path
 The goal is to establish a bound � on the L��norm of the map u� 	
 y�

Two versions of this problem have been posed
 One is to establish L��gain
� � only for the zero�state response� for all T � � and controlled paths
with x
 � �� Z T




jh�xt�j� dt � ��
Z T




jutj� dt� ��
��

The second is to generalize this to non�zero initial states x
 allowing a
nonnegative function K�x
� of the initial state to appear on the right�

Z T




jh�xt�j� dt � ��
Z T




jutj� dt�K�x
�� all T � �� ��
��

��
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The generalized version of the problem is to show there exists a ��nite�
function K��� � K��� � � such that this holds for all initial conditions
and all controlled paths
 �This is the version of the problem referred to in
Section 	
�
We de�ne the running cost �or supply rate in the language of dissipative

systems� to be

��x� u� �
	

�
���juj� � jh�x�j��� ��
��

and the associated Hamiltonian

H�x� p� � sup
u
fp � �f�x� � g�x�u�� ��x� u�g

�
	

�
���p � g�x�g�x�T p� p � f�x� � 	

�
jh�x�j�� ��
��

Note that the supremum is achieved for u��p� � ���g�x�T p� andHp�x� p� �
f�x� � g�x�u��p�
 Thus the spatial part xt of a bicharacteristic �xt� pt� is a
controlled path

�xt � Hp�xt� pt� � f�xt� � g�xt�u
��pt�

along which
H�xt� pt� � pt � �xt � ��xt� u

��pt���

Both versions of the L��gain problem are expressed succinctly in terms of
the available storage function� de�ned by

�a�x
� � � inf
Z T




��xt� ut� dt� ��
��

where the in�mum is over all � 	 T and controlled paths with the speci�ed
initial condition x

 Considering T � � immediately implies

�a��� � �� ��
��

�However� without further assumptions on the control system it is possible
for �a�x
� � ��
� L��gain � � for the zero�state response is equivalent to

�a��� � �� ��
��

This is because ��
�� means �a��� � � which is equivalent to ��
�� by ��
��

L��gain � � holds in the generalized sense ��
�� if and only if

� � �a��� 	�� ��
"�

��
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It is simple to check that �a obeys the Dissipation Inequality�

��xT � � ��x
� �

Z T




��xt� ut� dt for all controlled paths� ��
	��

Moreover �a is minimal among all nonnegative functions ���� � � satisfying
��
	��
 James �	�� shows that for a lower semi�continuous function �� ��
	��
is equivalent to the viscosity sense inequality

H�x�D���x�� � �� ��
		�

�This is to say � is a viscosity supersolution of �H�x�D��x�� � �� as many
authors put it
� Ball and Helton ��� observe� by applying James� result in
reverse time� that ��
	�� is also equivalent to

H�x�D���x�� � �� ��
	��

Soravia ���� and Ball and Helton ��� have shown that �a is actually a
viscosity solution of

�H�x�D��x�� � �� ��
	��

The question we consider here is whether we might be able to construct
�a from an appropriate Lagrange manifold
 Van der Schaft has recognized
that the stable manifold at ��� �� for the Hamiltonian system

�x � Hp�x� p�� �p � �Hx�x� p� ��
	��

is a natural candidate
 He makes appropriate controllability and observ�
ability assumptions which imply that this stable manifold is the graph of
a smooth function over some neighborhood �
 of � in state space
 This
provides �locally� the existence of a classical solution of ��
	��� and thereby
a local version of the L��gain property� holding for paths limited to �

 We
simply make our assumptions directly on the manifoldM that we intend
to work with
 To be speci�c we assume the following�

�M	� x � �� p � � is a hyperbolic equilibrium for ��
	�� and Ms is the
associated stable manifold


�M�� � is an open region in state space containing � with the following
properties�

a� for every x � � there is some �x� p� �Ms �i
e
 Ms covers ���

b� for every �x
� p
� � Ms with x
 � � the corresponding bichar�
acteristic ��
	�� has xt � � for all t � �


�"
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�M�� M is the submanifold of Ms consisting of those �x� p� � Ms with
x � �
 We assumeM to satisfy �A	� # �A�� of Section �


�M�� Vs�x� � supp� �x�p��M S�x� �� is a continuous viscosity solution of
��
	��� where S is the function on M determined dS � p � dx�
S��� �� � �


Several comments are in order
 First� Ms and the hyperbolicity in �M	�
are determined by H��� ��
 Second� � is not arbitrary but must be chosen
to satisfy �M�� with respect to Ms
 M is then determined by the choice
of �
 It follows that � and M are forward invariant for ��
	��� x
 � �
and �x
� p
� � M implies xt � � and �xt� pt� � M for all t � �
 �This is
important in Lemma �
� Next� as noted by van der Schaft and others�M
is a simply connected Lagrange manifold
 Therefore the function S�x� p�
is well�de�ned on it
 H��� �� � � �by ��
��� and since H is constant along
bicharacteristics in M� all of which converge to ��� �� as t 
 ��� we see
that H � � everywhere onM

We accommodate the ��� sign in ��
	�� by a simple change of variables


Note that ��
	�� is equivalent to saying that � � �� is a viscosity solution
of

'H�x�D��x�� � �� x � � ��
	��

with respect to the Hamiltonian

'H�x� p� � H�x��p��

De�ne a new Lagrange manifold 'M by

�x� p� � 'M if and only if �x��p� � M�

'H�x� �� is convex since H�x� �� is� and 'H� 'M satisfy our basic hypotheses
since H�M do
 The respective functions with dS � p � dx on M and
d 'S � p � dx on 'M are related by

'S�x� p� � �S�x��p��

Our candidate to solve ��
	�� is

W �x� � inf
p� �x�p�� �M

'S�x� p��

This is equivalent to

Vs�x� � �W �x� � � inf
p� �x�p�� �M

'S�x� p� � sup
p� �x�p��M

S�x� p� ��
	��

��
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being a viscosity solution of ��
	�� in �

One may check that the conversion from H to 'H involves a time rever�

sal
 What was the �upstream� direction of a bicharacteristic onM becomes
the �downstream� of its counterpart on 'M
 'M is �a subset of� the unsta�
ble manifold associated with the equlibrium point at �x� p� � ��� �� for the
'H bicharacteristic system
 Hence all of 'M is �downstream� from an arbi�
trarily small neighborhood of ��� �� in 'M
 In accord with our observations
following Example �
	
	� this makes us optimistic that W will in fact be
Lipschitz continuous and thus truly a viscosity solution of ��
	��
 We have
simply assumed the validity of this in �M��

It follows from James� result ��
		� that Vs satis�es the dissipation

inequality� restricted to controlled paths with xt � �
 We abbreviate this
by saying that �Vs satis�es ��
	�� in �
� Is is only reasonable to expect
a comparison with the available storage function de�ned with a similar
limitation
 We let ��a be de�ned as in ��
�� above� but with the additional
restriction to paths xt � �
 The �rst of the following lemmas is clear

Lemma � � � ��a ��� � �a��� in �� ��a is minimal among � which are
nonnegative and satisfy ���	�� in ��

Lemma � Vs��� � � and is minimal among those � with lim infx�
 ��x� �
� and satisfying ���	�� in ��

Proof� Since ��� �� � M and S��� �� � �� Vs��� � � is immediate from
the de�nition
 Suppose � satis�es ��
	�� in � and lim infx�
 ��x� � �

Consider any x
 � � and p
 with �x
� p
� � M and let �xt� pt� be the
bicharacteristic through �x
� p
� for t � �
 We know �xt� pt� � M and
xt � � and that xt is a controlled path with ut � u��pt�
 Moreover� since
� � H�xt� pt� � pt � �xt � ��xt� ut� it follows that

S�xT � pT �� S�x
� p
� �

Z T




pt � dxt

�

Z T




��xt� ut� dt

� ��xT �� ��x
��

As T 
 �� we know xT � pT and S�xT � pT � all converge to �
 Thus the
hypothesis lim infx�
 ��x� � � implies that

S�x
� p
� � ��x
�� all x
 � �� �x
� p
� �M�

From this we conclude that Vs�x
� � ��x
�
 Since Vs itself satis�es the
dissipation inequality ��
	�� in �� and lim infx�
 Vs�x� � Vs��� � �� the
proof is complete


�	



M
V
 DAY

Theorem � Vs��� � ��a ���� Vs � ��a if and only if Vs��� � � in ��
Proof� Since ��a ��� � �� Lemma � implies Vs��� � ��a ���
 If Vs��� � � then
Lemma � yields Vs��� � ��a ��� and hence Vs � ��a 
 If Vs � ��a then Vs � �
is immediate from Lemma �


The idea is to compute Ms� select the largest � possible satisfying
our hypotheses and then observe the resulting Vs
 If Vs��� � � in � then
Vs � ��a and we have veri�ed that L��gain � � in �
 It is interesting
to consider how this program might fail
 If Vs�x
� 	 � at some x
 � �
�necessarily x
 �� ��� consider the null�controlled path �xt � f�xt� through
x

 If xt stays in � we must have

Vs�xT � � Vs�x
� �

Z T




��xt� �� dt � Vs�x
� 	 ��

In particular xt is bounded away from �
 In the theory of nonlinear H�
control the L��gain criterion is usually taken together with a requirement
of asymptotic stability of � for the null�controlled system
 Thus Vs�x
� 	 �
implies that either � is not invariant for the null�controlled system� or
that it is not asymptotically stable
 This is in accord with the result that
global asymptotic stability of the null�controlled system implies that any
function satisfying the dissipation inequality ��
	�� with ���� � � must be
nonnegative� see ����
 If we �nd Vs��� � � then �a��� � ��a ��� � Vs��� � �
and so the zero�state L��gain is not bounded by �


��� Linear�quadratic examples

Simple linear�quadratic examples in � dimensions will illustrate situations
in which Vs �� ��a 
 We will use � � IR

�
 From the above remarks we know
the null�controlled system must fail to be asymptotically stable
 Consider
the control system �u � IR��

�x � Fx�Gu

with output given by
h�x� � Y x�

�F�G� Y are �� � real matrices
� The resulting Hamiltonian is

H�x� p� �
	

���
p �GGT p� p � Fx� 	

�
x � Y TY x�

The Hamiltonian system ��
	�� is linear�

�
�x
�p

�
� H

�
x
p

�
�

��
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where

H �
�

F ���GGT

�Y TY �F T

�
�

In both our examples M will be the stable subspace of H� described by
p � Px where P is a particular symmetric � � � matrix
 �� � IR�
� The
resulting Vs is the quadratic function

Vs�x� �
	

�
x � Px�

����� Example

Consider � � 	 and

F �

� �� �
� �

	

�
� G �

�
	 �
� 	

�
� Y �

� p
� �
� �p

	

�
�

One calculates that

P �

�
	 �
� �	

�
� Vs�x� �

	

�
�x�� � x����

Since Vs fails to be nonnegative we know Vs �� �a
 In this example �a �
��� due to the instability of F 
 Indeed for a null�controlled response� xt
with ut � � the dissipation inequality ��
	�� implies �because �a � ��

Z T




	

�
xt � Y TY xt dt � �a�x
��

which� since Y TY is positive de�nite� converges to �� as T 
 ��� unless
x
 is in the stable subspace of F 
 Using an arbitrarily small control to move
xt out of this stable subspace one easily argues that �a�x
� � �� on the
stable subspace of F as well


����� Example

Take � � 	 again and

F �

� �	 �
� 	

�
� G �

�
	 �
� 	

�
� Y �

� p
	
� �
� �

�
�

One calculates that

P �

�
�
� �
� ��

�
� Vs�x� �

	

�
x�� � x���

��
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Now however �a is �nite� given by

�a�x� �
	

�
x���

�Essentially� the instability is not observed
� Indeed� one can verify that �a
is a classical solution of ��
	�� and thus satis�es the dissipation inequality

By considering the feedback controls

ut �

�
�
� �
� �

�
xt�

one sees that �a is the minimal nonnegative function satisfying ��
	��


��� A nonlinear example

Finally� we o
er the following nonlinear example in � dimensions� indicating
coordinates as xt � �x��t� x��t�
 For ��
	� consider the linear system

�xt � �xt � ut�

but with the following nonlinear output�

yt � h�xt� � �x��t�
�	 � �x��t�x��t
	 � x���t

��

Taking � � �� we calculate the unstable manifoldMs of the Hamiltonian
system for ��
�� at ��� ��
 Figure � displays a selection of characteristics
from Ms for x� � � with the corresponding S values plotted vertically

One can see that Vs��� resulting from ��
	�� develops a �crease� over the
x� axis as one moves away from the origin� resulting in a true viscosity
solution to ��
	��


��
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Figure �� Nonlinear Example
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