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Linear Systems Based on Periodic
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Abstract

An indirect adaptive controller synthesis algorithm is derived for
the decoupling of linear multivariable time-invariant systems with
unknown parameters using periodic multirate-input controllers. Such
controllers contain a multirate sampling mechanism with different
sampling period at each system input and a periodically varying
modulating matrix function. The proposed adaptive algorithm is
readily applicable to systems with different numbers of inputs and
outputs, since the periodic multirate-input controllers used here re-
veal squaring-down capabilities. Furthermore, it does not rely on
pole-zero cancellation, and therefore it can be readily applied to
nonstably invertible plants and to diagonal reference models having
arbitrary poles and zeros and relative degree. Moreover, the pro-
posed adaptive algorithm estimates the unknown plant parameters
(and hence the parameters of the desired modulating function) on
line, from sequential data of the inputs and the outputs of the plant,
which are recursively updated within the time limit imposed by a
fundamental sampling period Tp. Finally, persistency of excitation
of the continuous-time plant, and therefore parameter convergence,
is provided without making any assumption concerning either the
reference signals or the existence of specific convex sets in which the
estimated parameters belong or, finally, the coprimeness of the poly-
nomials describing the ARMA model. The only a priori knowledge
needed to implement the algorithm, is the minimality of the con-
tinuous and sampled system, known order, and a set of structural
indices, namely the locally minimum controllability indices of the
continuous-time plant.
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1 Introduction

Digital controllers containing periodically time-varying mechanisms are
of particular interest, since they offer the possibility of solving, as an al-
ternative to standard dynamic compensators, a wide class of important
control problems. The reported results [1]-[14], may be grouped in two
general categories, as follows: The first [1]-[8], [12], involves a sampling
mechanism in which input or output samplers operate with a uniform mul-
tiplicity N (with N = 1, in some cases). The second [9]-[11], [13], [14],
involves multirate sampling mechanisms, i.e., input or output samplers op-
erate with a different sampling multiplicity at each plant input or output.
Both categories have successfully been applied to the solution of several
fundamental control problems, such as pole assignment [1], [3]-[5], [9]-[11],
simultaneous and/or adaptive stabilization [6]-[8], exact model matching
and decoupling [4], [7], [13], model reference adaptive control [12], [14],
optimal control [2], [11], etc. From the so—far reported results, it is well
recognized that periodically varying compensation provides several advan-
tages over conventional time invariant feedback schemes (see [4], [14], for
an extensive overview of these advantages).

This paper is devoted to the adaptive decoupling problem. Non-interact-
ing control is an attractive control problem proposed in the literature and
it has received much attention the last three decades, due to its theoret-
ical and practical importance. The basic idea of the problem, originally
proposed in [15], is to force the multi-input, multi-output (MIMO) system
under control to behave like a set of single-input, single-output (SISO) sys-
tems, thus greatly facilitating the overall control strategy in cases where
the designer is forced to control the different loops of a MIMO system indi-
vidually or each output independently. A complete solution to the problem
is given in [16]-[18]. Several important contributions based on different ap-
proaches were developed in the field and a very large number of papers
have been reported on the subject (for an overview see [18]). The adap-
tive decoupling problem is also of great practical importance for obvious
reasons. The first efforts to solve the problem appear in [19]-[21]. In [19],
a priori knowledge of the non-minimum phase zeros of the controlled sys-
tem is needed. Adaptive decoupling and prior knowledge of certain system
characteristics are also discussed in [20]. In [21], the derived results do
not guarantee exact decoupling and stability for general linear systems.
Subsequently, different approaches have been applied to solve the problem
[22]-[26]. In [22], [23], adaptive decoupling is achieved by the use of prec-
ompensators. In [22], it is necessary to factorize polynomial matrices into
its Smith forms as well as to compute the adjoint of polynomial matrices.
In [23], polynomial factorization of matrices is also necessary to isolate the
unstable zeros of the system under control. In [24], an adaptive-decoupling
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controller synthesis algorithm is presented, which amounts to the design
of a two-part controller, namely a pole-placement part to stabilize the sys-
tem under control and a postcompensator part which is used to essentially
decouple the system. Finally, in [25], [26], direct adaptive control schemes
are presented to solve the adaptive decoupling problem for systems with
stochastic disturbances. These adaptive schemes are based on the combina-
tion of the classical pole-zero placement strategy and the optimal strategy
for self-tuning control. Since, in the present paper, our interest is focused in
undisturbed plants, we next turn our attention to the approaches proposed
in [22]-[24] and point out that, despite their differences, the basic features
of these approaches are the following;:

1. They reduce the problem to the solution of a matrix Diophantine
equation, which is solved either on the basis of the widely used “cer-
tainty equivalence principle” (as for example in [23]) or on the basis
of a recursive method (see [24], for details).

2. They contain a pole-zero placement part to avoid unstable pole-zero
cancellations.

3. They apply ounly to systems with the same number of inputs and
outputs.

4. Their convergence is established under the assumption that the in-
put signals are persistently exciting. Nevertheless, recently, ways to
remove this assumption are suggested. One such method is the de-
caying excitation procedure proposed in [27].

In the present paper the adaptive decoupling problem for linear time-
invariant systems is attained on the basis of periodic multirate-input con-
trollers (MRICs). MRICs were originally proposed by Araki and Hagiwara
in [9], [10], in order to achieve arbitrary symmetric pole assignment in lin-
ear time-invariant systems. Such controllers contain a multirate sampling
mechanism with different sampling period at each system input and a pe-
riodically varying modulating matrix function. MRICs can essentials be
viewed as the special class of m-input, p-output multirate sampled-data
control systems in which all output samplers operate with multiplicities 1
and the input samplers with multiplicities { Ny, ..., N, }. Note that MRICs
are the dual of multirate-output controllers (MROCs) presented in [28], in
which input and output samplers have the reverse operation. It is worth
noticing at this point that, although the inputs of the continuous-time plant
are sampled in a multirate fashion, our aim here is to achieve adaptive de-
coupling control only at the sampling instants 7y, associated with the
fundamental period Tj, on the basis of which the output samplers operate.
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To the authors’ best knowledge, there are no results in the literature con-
cerning the use of this type of multirate sampled-data controllers in order
to achieve adaptive decoupling. The only partially relevant results are pre-
sented in [28], wherein adaptive decoupling control is attained on the basis
of MROCs. The technique proposed here to solve the discrete adaptive de-
coupling control problem of continuous-time linear time-invariant systems,
is motivated by some ideas regarding persistent excitation of a continuous-
time plant, which are reported in [12], by the results of [14] and by some
new results concerning the solution of the decoupling problem through ex-
act model matching techniques. This technique results in a globally stable
indirect adaptive control scheme, which estimates the unknown plant pa-
rameters (and hence the parameters of the desired modulating function)
on line, from sequential data of the inputs and the outputs of the plant,
which are recursively updated within the time limit imposed by the fun-
damental sampling period Tj. It is pointed out that, the only a priori
knowledge needed to implement the proposed algorithm, is the minimality
of the continuous and sampled system, known order, and a set of structural
indices, namely the locally minimum controllability indices (LMCI) of the
continuous-time plant. Here, locally minimum controllability indices will
be defined in the next section, but note that a typical example of LMCI is
the set of “Kronecker invariants” of a controllable matrix pair.

The motivations for using periodic MRICs controlling linear system, are
manifold. First of all, such controllers give more flexibility to the designer
as compared to single-rate controllers, especially in cases where single-rate
controllers cannot solve the problem considered. Moreover, in multirate-
input controllers, sampling of the system outputs take place less often than
sampling of the system inputs. Furthermore, multirate controllers main-
tain all benefits of periodic compensation over standard static or dynamic
compensation. For an overview of these benefits, see [4], [10], [11], [13]. In
particular, with regard to the adaptive decoupling problem treated in the
present paper, we mention that the technique based on periodic MRICs
has the following advantages over known techniques:

1. It reduces the solution of the problem to the solution of a simple
non-homogeneous algebraic matrix equation, rather than a matrix
Diophantine equation, as is needed in standard techniques.

2. It does not rely in pole-zero cancellation and hence it can be read-
ily applied to solve the adaptive decoupling problem for nonstably
invertible plants and for diagonal reference models having arbitrary
poles and zeros and relative degree.

3. It is applicable in general to systems with different number of in-
puts And outputs, since the MRICs used here reveal squaring down
capabilities.
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4. It offers a solution to the problem of ensuring persistency of excitation
of the continuous-time plant, without imposing any special require-
ment on the reference signal (except boundedness) and without mak-
ing any assumption concerning either the existence of specific convex
sets in which the estimated parameters belong or the coprimeness of
the polynomials describing the ARMA model.

2 Preliminaries and Definition of the Problem

Consider the continuous-time, linear time-invariant multi-input, multi-
output system having the following state-space representation

x(t) = Ax(t) + Bu(t), y(t) = Cx(t) (2.1)

where x(t) € R" is the state vector, u(t) € R™ is the input vector and
y(t) € RP is the output vector and where the matrices A, B and C have
appropriate dimensions.

With regard to the system (2.1) we make the following two assumptions:

Assumption 1 (a) System (2.1) is controllable and observable and of
known order n. (b) There are known integers n;, i € Iy, Jm =
{1,2,...,m}, which comprise a set of locally minimum controllably indices
of the pair (A,B).

Assumption 2 Let N;, © € J,, be positive integers. Also let
N =lem{Ny, ..., Ny}, where lem{x,...,*x} denotes the least common mul-
tiplier of the arguments quoted in the braces. Then, there is a sampling
period Ty € R™T, such that the discretized systems, obtained by sampling
(2.1) with periods Ty and T = Ty /(6n—1)N and having the following matriz
triplets

(®,B,C)

1o
(exp(ATy), /0 exp(A)N)Bd)\, C)

(#..B,.0) = (exp(an). | " exp(AN)BAA, C)

respectively are controllable and observable.

Except for this prior information, the matrix triplet (A, B, C) is arbi-
trary and unknown. It is mentioned that, no assumption is made here on
the relative degree of the plant or its stable invertibility.

For a controllable matrix pair (A, B) with B = [by by ... b, its lo-
cally minimum controllability indices (LMCI) are a collection of m integers
{ni,ma,...,npy}, for which the following relationships simultaneously hold

5
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Zni =n and rankb; ... A" by ... b, ... A" 'b, ] =n.

i=1

Note that, LMCI defined as above are also known as the “Kronecker
invariants” or “Kronecker indexes” of the pair (A, B, C).

The adaptive decoupling control problem treated in this paper is as
follows: Given a discrete-time linear reference model M of the form

Z{ym(kTo)} = Hyg(2) Z{w(kTp)} (2.2)
with
Hyp(2) = Cp(e1- Ay "By = AG) £ ding RUICIENCE)

where Z{e} denotes the usual Z-transform, ¢;(z), for i € J,, J, =
{1,2,...,p}, are strictly causal rational functions for the desired diagonal
reference model, whose denominators are strictly stable polynomials of the
indeterminate z, and where ypp(kTp) € RP is the output of the reference
model and w(kTp) € RP is an arbitrary uniformly bounded reference se-
quence, then find a periodic multirate-input controller, which when applied
to system (2.1), achieves discrete-time asymptotic model following, i.e.,
lim [y (kTo) — ym(kTp)] = 0.

k— o0
All signals in the control loop are bounded.

where y(kTp) is the output of the plant evaluated at kTp. It is pointed out
that, no assumption is made here on the zeros and the relative degree of
the model A(z), which may be arbitrary.

To solve the above problem, we next propose an indirect adaptive con-
trol scheme. In particular, we first solve the decoupling problem using
a model matching technique, namely, we solve the problem of the exact
matching of system (2.1) to the model (2.2), via MRICs. This is done is
Section 3 and the corresponding control strategy is depicted in Figure 1.
Next, using these results, the exact model matching problem is solved for
the configuration depicted in Figure 2, wherein the periodic controller F(¢)
is with prespecified periodic behavior and where persistent excitations are
introduced in the control loop for future identification purposes. This is ac-
complished in Section 4. It is remarked that the motivation for modifying
the control strategy, as in Figure 2, is that it facilitates the derivation of
the indirect adaptive control scheme sought. The derivation of the indirect
adaptive scheme is presented in Section 5, where the global stability of the
proposed scheme is also studied.
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Figure 2: Structure of the adaptive control system
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3 Solution of the Decoupling Problem for Known Sys-
tems

The control strategy proposed here to solve the decoupling problem in
the case of known systems is depicted in Figure 1. With regard to the
sampling mechanism, we assume that all samplers start simultaneously at
t = 0. The sampling periods T; have rational ratio, i.e., T; = Ty /N;, for
i € J,., where Tp is the common sampling period and N; € Z* are the
input multiplicities of the sampling. The hold circuits H; and Hy are the
zero order holds with holding times 7; and Ty, respectively. Let

The compensator F(¢t) € R™*? is a periodically time-varying controller
with period Ty. That is

F(t+ Ty) = F(t). (3.1)

As it can be easily shown, the resulting closed-loop system is described
by the following state space equations

§[(k+1)To] = (2-KC)¢(kTo) +Kw(kTy), y(kTo) = C{(kTo), fork =0

where £[kTy] € R™ is the discrete measurement vector obtained by sam-
pling x(¢) with sampling period Ty and where the matrix K is defined
as

K= /0 " exp[A(Ty — \)|BF(A)dA. (3.2)

System (2.1) can match system (2.3), using a periodic multirate-input
controller of the form (3.1), with the common sampling period Ty, iff

H.(2) =C(:I-®+KC) 'K = Hp(2) = A(z) = diag {&i(2)} (3.3)

i=1,2,...,p

In what follows, a new technique is presented for solving (3.3) with
regard to the matrix K. The proposed technique is as follows: Observe
first that, from relation (3.3), we can easily obtain

C(zI- &+ KC) 'k; = 6;(2)e; , for i€d, (3.4)

where, k; is the ith column of the matrix K and where ¢; € RP, for
i € Jp, is the column vector whose elements are all zeros except for a
unity appearing in the ith position.
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Next, expand both sides of (3.4) in a series of negative powers of z, to
yield

Y 2 IC(@ -KCY k=) 2 (66 (3.5)
j=1 i=1

for i € J, and for j>1
where (6;);, for i € J, and for j > 1, are the coefficients of the expansion
of §;(z) in a series of negative powers of z. Equating coefficients of like
powers of 271 in (3.5), we obtain
C(® — KC)''k; = (8;)j€; , for j>1. (3.6)
In (3.6), it is sufficient to keep only the first 2n equations, since for the
realization of a strictly causal rational function of the intermediate z, only
the first 2n coefficients of its respective expansion in a Laurent series are
needed (see [29]), for a detailed analysis of this issue). Then, relation (3.6)
reduces to the following set of equations
C(® — KC)'k; = (&:)€i , for j=1,2,...,2n. (3.7)
We next manipulate (3.7), in order to obtain a more useful result. To
this end, let (y;)1 = (6;)1. Then relation (3.7), for j = 1, yields
Cki = (w)lei. (38)

Observe now that on the basis of (3.8), the second equation of the
system (3.7) takes the form

C(® - KC)k; = C®k; — CKCk; = C®k; — diag {(6:)1}(7:)16s =

i=1,2,...,p

C‘i’ki — (501(’)@')161 = ((5@')26@'.

Defining (v;)2 = (6;)2 + (6:)1(7i)1, the foregoing relation can also be
written as

The third equation of system (3.7), can further be written as

C®’k; - CKC®k; — CPKCk; + CKCKCK; = (§)3¢;.  (3.10)

On the basis of (3.8) and (3.9), the left-hand-side of (3.10) can also be
written as

C®°k; — (6:)1(7e)2€i — (73)2(6:)1€i + [(6:)1] €
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= C®%k; — (6:)1(7i)2€6i — [(6:1)2 + (7i)1(8:)1](6:)1ei + [(8:)1]%€s
= C®%k; — (8:)1(7i)26i — [(80)2 + [(8:)1)°1(6i)r€i + [(6:)1)% €
= C®%k; — (6:)1(7i)26i — (6:)2(6:)1€i

= C®°k; — (6:)1(7i)2€i — (8i)2(7i)1€s (3.11)
Introducing (3.11) in (3.10) and defining
(7i)s = (83)3 + (63)2(7a)1 + (8:)1(7i)2,
we readily obtain
Cq)‘lilki = (7i)3€;

By repeatedly using the above algorithm, one can easily replace the
jth equation of the system (3.7) (for j = 1,2,...,2n), by its equivalent
equation having the form

col 1k, = (v,);e, for j=1,2,....2n (3.12)

where
J
(v = (1 and (vi)j1 = (8)j41 + D (80)r(30)j—rt1-

Relation (3.12), can be written in a compact vector-matrix form as

follows
Mk; =g; , for i €J, (3.13)

where the matrix M € R?"*P and the column vector g; € R?™ have
the following forms

C (vi)r€:
Ce ('7i)2€i )
M = . » 8i = : , for i € Jp. (3.14)
ce* ! (7i)2n€i

Relation (3.13) is a linear non-homogeneous algebraic system of equa-
tions. The matrix M and the column vector g; are known and depend

10
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upon the matrices C and ® and upon the Markov parameters (6;);, for
t €Jp and for j =1,2,...,2n, of the desired diagonal model, respectively.
Clearly, the solution of the decoupling problem (3.3) is now reduced to that
of solving (3.13), with respect to k;, i € J,. With regard to the solution
of (3.13), we point out that, since by Assumption 2.2 the pair (®,C) is
observable, the matrix M has full column rank equal to n. Consequently,
relation (3.13) has a solution if and only if

rank[M g;]=n (3.15)

or equivalently if g; is a linear combination of the columns of matrix M.
Furthermore, a solution of (3.13) is the following

ki=q, = (M"M)"'MTg;. (3.16)
Hence, the solution for the matrix K is given by

K=Q;=[a1 g2 ... qp]. (3.17)

Using the matrix K as specified by (3.17), we can readily determine
the controller matrix F(t), by solving (3.2). Under Assumption 1, on the
controllability of the pair (A, B), a solution of (3.2) is the following [7]

F(t) = BT exp[AT(T) — t))W™! (A, B, T))K (3.18)

where W(A,B,T)) is the controllability Grammian on [0, 7] of the pair
(A, B), which has the form

W(A,B,T,) = /TO exp[A(Ty — \)|BB” exp[AT (Ty — A)]dA.

Note that, the controllability Grammian W(A,B,Tp) is nonsingular
and hence a solution of (3.2) of the form (3.18) exists if the pair (A, B) is
controllable.

4 A Solution of the Decoupling Problem Appropriate
for the Adaptive Case

In order to obtain a solution of the decoupling problem which will be
more appropriate for application in the case of systems with unknown pa-
rameters, we slightly modify in the sequel the control strategy of Figure 1
as it is depicted in Figure 2. In particular, we focus our attention on the
special class of the time-varying Ty-periodic controllers F(t), for which ev-
ery element of F(t), denoted by f;;(t), is piecewise constant over intervals
of length T3, i.e.,

fijt) = fijpu YVt € [0l (p+1)T0) , p=0,1,....,N; =1 (4.1)

11
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The persistent excitation signals v;(t), Vi € J,, are defined as
vi(t) = df (t)vi , di (8) = [(di)o(t), ..., (di)n;—1(D)]. (4.2)

Here, d;(t) is the T;-periodic vector function with elements having the
form

(di)q(t) = (di)q » for t € [uT5, (p+ 1)T7) (4.3)
¢q=0,1,....N;—1, p=0,1,...,N;— 1

where (d;),,, are constant taking the following values

e 4.9

and where v; is as yet unknown. It is worth noticing that the additive term
vi(t) = dI(t)vi, Vi € J,,, in each one of the inputs of the continuous-
time system, are used only for identification purposes and as it will be
shown later, they are selected so that they will not influence the decoupling
problem.

We are now able to establish the following Lemma.

Lemma 1 Consider the controllable and observable system of the form
(2.1), controlled by a periodic multirate-input controller of the form (4.1).
Furthermore, consider that persistent excitation signals of the form (4.2)-
(4.4) are introduced to each input of the system. Then, the sampled closed-
loop system takes the form

E[(k +1)Ty] = (& — BRC)E(KT,) + BEw(kT,) + B*v (4.5)

y(kTy) = C¢(kTo), for k>0

where

~

BEb, ... AM7by ... by, ... AN—1D,,] (4.6)

A £ exp(AT}) = exp(ALTY) ,

~ T; ;TN
b; 2 / exp(AN)b;d)\ = / exp(AN)b;d\ (4.7)
0 0
Ty €s;
N T2 ea'j—l
B*=BT , T=| ° |, T,= _ (4.8)
Tm €s;—N;+1

12
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and where the m x p block matriz F and the column vector v e RN have
the forms

fll P flp fij,Ni—l
F= ST , By = : (4.9)
f‘ml . fmp fij,()
v=NvI v (4.10)

while o; = Zi:l N,., where in general, the vector e; € RN is the row
vector whose elements are zeros except for a unity appearing in the ith
position.

Proof: To show that the sampled closed-loop system takes the form (4.5),
we start by discretizing system (2.1) with sampling period Tp. This oper-
ation yields
(k+1)To
E[(k+1)To] = ®E(KTD) +/ exp{A[(k+1)Tp — A]}Bu(M\)dA. (4.11)
kTo

Observing that u;(t) = r;(t) + dl (t)v; and taking into account the
structure of the control system in Figure 2, we obtain

ui(t) = £ (t)e(kTo) + dl (t)v; , fort € [uT;, (u+ 1)T}) (4.12)

where £'(¢) is the ith row of the controller matrix F(¢) and e(kTy) is given
by

Combining relations (4.11)-(4.13), we obtain the following relationship
€[k + 1)Ty] = (® — KC)E(KTy) + Kw(kTy) + T'v (4.14)

where

(k+1)Tg
r= / exp{A[(k+1)Ty — A]}BD(A)dA , D(t) £ blockdiag{d? (¢)}
ko i€dm

Now, partition I' as follows
T=[ T, ... T,
Then, the (¢ + 1)th column of the matrix I'; for ¢ € J,,, denoted by
(T'i)g+1, for ¢ =10,1,...,N; — 1, can be expressed as

To
(T)asr = / exp[A(Ty — A]bi(d)g(NdA | (4.15)

13
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forq=0,1,...,N; —1
Introducing relations (4.2) and (4.4) in (4.15), we obtain

Nizl r(pt+1)T:
(Ti)gr1 =Y / exp[A(Ty — A)by(d)g.ud)] (4.16)
u=0 71T

forgq=0,1,...,N; —1

Relation (4.16) may further be written as

N;—1 15
(Ti)gs1 = Y (di)guexp[A(N; — p — 1)T}] / exp[A(T; — A)]b;d\
=0 0
N;
= () _(di)g, N~ ALTHb,.
o=1

Making use of relation (4.4), we arrive at the following relationship
(Ti)gp1 = AN 71D,

Clearly I' = B*. Application of the above algorithm to the first two
terms of (4.14) yields K = BF. This completes the proof of the lemma. O

Thus far, we have established that the decoupling controller matrix K is
related to the matrix F via the relation K = BF. It remains to determine
F. To this end, we need the following result, whose proof is given in [10].

Lemma 2 Let (A,B) be a controllable pair. Let also n;,i € I, be a set
of locally minimum controllability indices of the pair (A,B). Define an
analytic function ¥(Ty) by

Y(Iy) =detlby ... A" by ... b, ... A"m71b,].

Then the set of zeros of W(Tn) does not have any limiting points except
infinity, and therefore, ¥w(Tn) is not equal to zero for almost all Tx (i.e.,,
in a finite interval [T, T%], there are at most a finite number of points
such that ¥(Tnx) =0).

Applying Lemma 2, we can conclude that the matrix S of the form

~

S=[b;...A" b, ...b,,... A" 1b,] (4.17)

is nonsingular for almost all Ty € [I'y,T%]. Furthermore, if the input
multiplicities of the sampling N; are chosen such that N; > n;, i € J,,, then,
the matrices B and B* have full row rank n for almost all Ty € [Ty, T%].

14
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Now, let E € RV *N" be the nonsingular permutation matrix with the
property E~! = ET| having the form

E = [E, E;*
where
Ei = [e1€...€n, ENy+1 ENj 42+ - ENytnp -« - EN*—Npy+1 EN*— Ny 42 - - -
6N*—Nm-t-nm]
and

E2 = [6n1+1...6N1 ENi+ng+1---€EN+ Ny ---EN*me+nm+1---fN*]

where, in general, ¢; € RY " is the column vector whose elements are zeros
except for a unity appearing in the jth position. Also, let
-1

=5Q]

where the matrix S is defined by (4.17) and matrix Q is given by

B2 BE

Q=[AMb, ... AN, .. Ameb, . ANa1h

Furthermore, let A € RY N be the nonsingular permutation matrix
with the property A—! = AT having the form

A=A Ay, AT
where

Al = [€N1—n1+1 ...€EN; EN{+No—no+1---€EN;+Ny - - - EN*—N,, +1 - - .EN*]
Ay = [€N1—7’b1 EN14+Na2—na "'EN*—Nm]

Ag = [61 o €EN;—n1—1 EN; 41 ---€EN;+No—no—1---€EN*—N,_ +1 - --EN*—nm—l]-

Finally, let
B LBA- =[§ AMb....AMD, Q]

where . . . . . .
S*=[A" 'by...by... A" 1b,, ... by,] (4.18)

Q* = [A{Vl_lf)l - A?1+1E)1 . .Aanmilf)m - A:an+1f)m].
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Using these definitions, it is plausible to determine F by mere inspec-
tion, as
. Q-1
F=ET { S OQS } (4.19)
It only remains to determine the appropriate vector v which guarantees
that the decoupling problem will not be dependent on the vector v. In other

words
v € kerB* or B*v=0.

An obvious selection of such v obtained also by inspection is the fol-
lowing
—§*~1(A"b; + ...+ A™b,,)
v=AT ¢ (4.20)
0N*‘fnfm

where ¢ € R™ is the column vector whose elements are all equal to 1.

It is noted that the N*-dimensional column vector v, even though does
not affect the discrete decoupling problem, it provides persistent excitation
useful for the consistent identification of the system, as will be shown in
the following Section.

Clearly, the multirate controller matrix F(t) of Figure 2 can readily be
determined by making use of relations (4.1), (4.9), (4.19) and (3.17). More
precisely, the ith row £ (¢) of the matrix F(¢) and the ith block row of the
matrix F are interrelated as
T <t< (p+1)Ty
N; N;

(4.21)
for i € J,, and for p = 0,1,...,N; — 1, where ey,_, € R is the row
vector defined as ey, —, = e%i_“. Note that, the controller matrix F(t), as
specified by (4.21), is largely affected by the multirate mechanism, while the
controller matrix F(t) as specified by relation (3.18) is not. Furthermore,
the introduction of the excitation signals v;(¢) in the control loop, greatly
facilitates the consistent estimation of the plant parameters in the case
of unknown systems. For these reasons, the control strategy of Figure 2 is
more appropriate than the control strategy of Figure 1 for the development
of the indirect adaptive control scheme presented on the following Section.

£1() = [fa(t) ... fip(t)] = eny—ulfir .. . £5) . ¥

5 Control Strategy for the Adaptive Case

The control scheme presented in Section 4 has a corresponding scheme
in the case where the system is unknown. For this case, the control strategy
is largely based on the computation of the matrix F and of the vector v
from estimates of the plant parameters, and results in a globally stable
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closed-loop system whose output asymptotically follows the output of the
desired decoupled model.

5.1 Plant parameters estimation algorithm

The algorithm proposed here for estimating the unknown plant pa-
rameters is as follows: System (2.1), discretized with sampling period
T =To/(6n — 1)N, takes the form

v+ 1)1 =2:£(vr) +Bru(vr) , y(vr) =Cévr) , v>0 (5.1)

where -
®,. =exp(AT) , B, :/ exp(AN)Bd.
0

Clearly, u(v7) takes constant values for vr € [oTn, (0 +1)In], 0 > 0.
This can be easily shown by taking into account the action of the proposed
controller. Hence, iterating relation (5.1) 6n — 1 times, we obtain

E(m + 1)TN]) = @1y &(mIN) + Bryu(mIy) , m >0

where
6n—2

Ory = ()", By, = ) ®B. (5.2)
0=0

Using the same argument, we can easily conclude that

li—1
A;=3f |, bi=> &% (Br,) (5.3)
0=0

where (Byy ); is the ith column of the matrix By,,. Introducing relation
(5.2) in (5.3), yields

l;—1 6n—2
A, = (b_(anfl)lz , b= Z({)T)(Gn—l)j( Z ®¢B,); (5.4)
j=0 0=0

Moreover, the matrix ® can be written as
& =AY = @) =(o,) DN, (5.5)

Therefore, @, A; and b; (which are the only matrices involved in com-
puting F and v) can be computed on the basis of @, and B,. For this
reason, in what follows our aim will be the estimation of the matrix triplet
(®,,B,,C). To this end, let the matrix € be defined as

Q={Q;} =V " | Q;=Ceiti B, . (5.6)

j=12,...n >

17



K.G. ARVANITIS

Clearly, if one establishes estimates of the matrix €, then one may
easily compute the desired matrix triplet (®,,B,, C), using anyone of the
minimal realisation algorithms reported in the literature (see for example
those reported in [29]-[31]). To estimate matrix €2, one must resort to an
input-output representation (also called ARMA representation) of system
(5.1). This representation is summarized in the following Theorem:

Theorem 1 Suppose that there is a sampling period Ty, € R and in-
put multiplicities of the sampling N;, i € J,,, such that the system (5.1),
obtained by sampling the controllable and observable system (2.1), is also

controllable and observable. Then, an alternative representation of system
(5.1) is given by

Y(vr) =31P[(v —2n)1] + I W(vT) + VW[(v — n)71| + V*W([(r — 2n)7]

(5.7)
where
y[(v —n+ 1)7] [ y[(v —3n+ 1)7]
or) — yl(v — " +2)7] W 2] = yl(v — 3'n +2)7]
y(vr) |yl - 20)7]
u[(v —n+1)7] W
W(vr) = ulr= " 2 (5.8)
awr) |
ul(v — 2n + 1)7] ul(v — 3n + 1)7]
Wil — n)r] ul(v — n+ 2)7] Wil — 2] — ul(v — 3:n +2)7]
al(v — n)r] ul(v — 2n)7]
(5.9)
0 0 0
lea*l{g g]s*,:lz: C]:BT ? ?
C®" ’B, CB. 0
V=P, V=51 [ V; ] (5.10)

18
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and where
C
. Co.
J=P;®"P; !t P*= . ,
C@”n—l
> =[®"'B, ... ,B, B/] (5.11)
VY =P;®" [T - &"P; U] (5.12)

while the nonsingular permutation matriz 2* € R™P*"P is such that

=P = [ 1:)1 ] (5.13)

where P} € R™*" is the nonsingular matriz whose rows are the linearly
independent rows of the matriz P*. Finally, Uy € R"*™ is the matrix
containing the first n rows of the matriz

U =2"T,. (5.14)

Proof: In order to prove relation (5.7), we next generalize the approach
presented in [32], to the multivariable case. More precisely, from relations
(5.1) we have

y[(v = n+1)7] = C¢[(v — n+ 1)7]
yiv —n+2)r] = C®£[(v —n+1)7] + CB u[(v —n + 1)7]

y(vr) = C®2L¢[(v —n + 1)7] ‘+ Zz;g CP2B uf(v — o —1)7]
or more compactly,
Y(vr) =P*¢[(v—n+1)r] + T W(v7) (5.15)

where, ¥(v7) and W(v7) are defined by (5.8) and P* and J, are defined
by (5.11) and (5.10), respectively.

Since, by Assumption 2, the pair (®., C) is observable, the matrix P*
has full column rank. Hence, there exists a nonsingular permutation ma-
trix 2* € R"™*"P gsuch that relation (5.13) to hold, where, as already
mentioned, P € R"*"™ is the nonsingular matrix whose rows are the lin-
early independent rows of the matrix P*. It is pointed out that matrix =*

~

can be defined as a product of two nonsingular matrices 2 € R™*"P and
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E € R™X" yia the following chain of definitions

e ]
€2
. €51
: ejo
= _ ~A S €n A .
2 =22, 2= , ==
w1
e,
W Jjn
=+
=1
L Wnp—n |

where Ef € R("P=%)*7 i5 the matrix produced by the nonsingular matrix
ET € R™X" of the form

by dropping the row vectors e;, i = ji,jo2,...,jn are the indices of the n
linearly independent rows of P* defined as p}‘-p, o=1,2,...,n. Note also
that w, € R", k=1,2,...,np — n is the column vector of the form

wk:[()\jl)k ()‘jz)k ()\jn)k 0...0 -1 00]
(n+k)th position

where (Aj, )k, 0=1,2,...,n, k=1,2,...,np—n are the coefficients of the
following dependence relation holding for the rows of the matrix P*

Z(Ajp)kp;p _Pz =0, k¢{j17j27'--:jn}

o=1
where, p,’:,T, k & {j1,742,-.-,Jn} is the kth row of the matrix P*.
Now, multiplying (5.15) from the left by Z*, yields
, P;
Z*(vr) = 0 E(v—n+1)71]+UW(rr)
where
Z*(vr) = E"¥(v7) (5.16)

and where U is defined by (5.14). Next, decompose Z*(v7) and U as
follows

Z*(vr) = [ 282 ] , U= [ g; ] (5.17)
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where ZI(I/T) € R", ZS(VT) c R”(P—l), U; € R™m™ and
U, € RMP=Dxnp_ Clearly,

Zi(vr) =Pi¢[(v —n+ 1)7] + Uy W(v7). (5.18)

From (5.18), one may easily obtain the following relation
(v —n+1)71] =P Yz (vr) — U W(vT)). (5.19)
Furthermore, as it can be easily shown, the following relationship holds
(v —n+1)7] = 82"¢[(r — 3n + 1)7] + PEW/|(v — 2n)7] + W (v — n)7]
where W[(v — n)7] and W{(v — 2n)7] are given by (5.9), and where(52'32?;

defined by (5.11). Introducing appropriately relation 5.19 in relation 5.20,
after some algebraic manipulations, yields

Zi(vr) = U W(ur)+IZ (v —2n)7] + VIW|(v — 2n)7] +
+ PIZW][(v —n)7] (5.21)
where J and V*, are defined by (5.11) and (5.12), respectively. Combining

relations (5.14), (5.16)-(5.18) and (5.21), we readily obtain (5.7). This
completes the proof of the Theorem. a

It is remarked at this point that matrix V and matrix 2 are related
through the following relationship

0 ... 0 I
o 0 ... I 0

Q=vt, T=| . . . |. (5.22)
I ... 00

Relation (5.7) will be used in the sequel for the identification of the
unknown matrices Jq1, Jo, V and V*. To this end, relation (5.7) is next
written in the linear regression form

U (vr) = Op(vT)

where
®@=[J; J, V V7

is the true value of the plant parameter matrix, and where
o (vr) = [ [(v — 2n)r] WT(vr) W —n)r] WT[(v — 2n)7]].
Next, define
Z(kTo) = [¢(kKTo) (kTo —7) ... ¢[(k —1)To]]
21
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Y (kTy) = [®(kTy) ®(kTo —7) ... ®[(k — 1)T}]]

~

O(kTy) = [J1(kTy) J2(kTo) V(kTo) V*(kTo)]

where J1(kTy), J2(kTy), V(kT,) and V*(kTy)], are the matrices J1, J2, V
and V* evaluated at k7Tp, through the identification procedure. Clearly,
the following relation holds

Y (kTy) = OZ(KTy).

We now chose the recursive algorithm for the estimation of ©(kTp) as

~

O(kTy) = O[(k—1)Tp] - [O[(k — 1)To)Z[(k — 1)Tp) — Y[(k — 1)To]] x
2" [(k — 1)To]od + Z[(k — )T 2" [(k — )T * (5.23)

where o € RT, ©(kTy) is the estimated parameter matrix © at time
t = kT, and Oy = @(kT0)|k:0 is arbitrarily specified. It is pointed out that
the term oI in (5.23), is added in order to avoid numerical ill condition-
ing, arising in the identification procedure based on the usual least-squares
algorithm, when the determinant of the matrix Z[(k — 1)Tp)Z* [(k — 1)Ty]
takes small values.

Commenting on the nature of the adaptive law (5.23), we point out
that, it describes, as already mentioned, an on-line estimation procedure
which deals with sequential data and in which the parameter estimates
are recursively updated within the time-limit imposed by the sampling
period Ty. It is worth noticing, at this point that, in the present case, it is
presumed that, a complete block of information needed for the estimation
of the plant parameters, in not available prior to analysis and control, as in
several off-line estimation procedures. Therefore, in our case, identification
and control of the plant are performed concurrently. In order to calculate
the desired MRIC based decoupling controller parameters, it is necessary
here to update the plant parameter estimates using (5.23) and then solve
the canonical equations of Sections 3 and 4 for every time step k (see the
following Subsection for details). This is in contrast, to the standard policy
followed in cases where identification and control of the plant are performed
separately, in which we solve equations for the plant and the controller
parameters once, after an appropriate minimum number of observations
(see [33]-[34] for a comparative study of the two approaches).

Note also that, the adaptive law (5.23) is chosen so that @(kTg) will
satisfy equation Y (kTy) = OZ(kTp) (k > 0) asymptotically with time,
i.e., for k — oo, rather than at every time instant. In other words, in the
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early stages of the on-line identification procedure, the estimated parame-
ter matrix O (kTp), obtained by (5.23), is usually far from its true value ©
and it is expected that the plant parameter estimates (and consequently
the controller parameter estimates) converge to their true values, only as
k — oo. Therefore, exact determination of the desired MRIC based decou-
pling controller through the procedure presented in Sections 3 and 4, is
expected here, only after a certain step of the overall control procedure.
Before this step, the calculated controllers are far from being those, which
guarantee the desired performance of the closed-loop system. However, it
is a standard fact in all adaptive control schemes that, convergence of the
parameter estimates to their true values, depends on the specific proper-
ties of the particular identification procedure used and crucially affects the
adaptation. So, in what follows, we will investigate the convergence and
boundedness properties of the proposed identification procedure, which are
summarized in the following proposition.

Proposition 1 Let (:)(kTg) be the parameter estimation error, defined as
O (kTy) = OT(kTy) — O (5.24)

Then, for the parameter estimation algorithm of the form (5.23), the
following properties hold

(a) [|OTY)|| < p, for some finite p € RT

k
(b) If Jim > Amin(Z(0To)Z" (oTy)) = 0o then  lim O(kTy) = ©
o0 =0

k—o00

where Amin(®) denotes the minimum eigenvalue of a matriz.

Proof: (a) Taking the transpose of both sides in (5.23), introducing (5.24)
in the resulting relation and taking into account the fact that Z7 (kT)®T —
Y7 (kTy) = 0, we readily obtain

OkTy) = {I—[od+Z[(k - DI]Z"[(k— )Tp]| ™" x
Z[(k — D)To)Z" [(k - VTo}O[(k — )To].  (5.25)

On the basis of the Matrix Inversion Lemma, relation (5.25) may further
be written as

O(kTy) = {1+ ézuk ~DLIZT[(k - DT} 'Ok — )To).  (5.26)
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Therefore,
& (MB(T) = & [(k— DIHI+ ~2Z[(k ~ DTZ" [(k )T}~
ok - 11y]
< (1 + Amzn(z[(k — I)J;J]ZT[(]C — I)TO]) )—QéT[(k _ ].)T()]é[(k _ ].)TO]
(5.27)
By repeatedly using the above inequality, we obtain
k-1
0=0
= T
<+ D Anin(Z(0Th)Z" (eTy))] > @ ©0 (5.28)
0=0

~ ~T T ~ ~
where @9 = ©@) —© . Hence, ||@(kT))|| is uniformly bounded by @9, and
since @ is finite, @(kT)p) is also uniformly bounded by some finite p € R™*.

(b) If limg—oo Yb_ g Amin(Z(T0)ZT (¢Ty)) = oo then, from (5.27), it

follows that limy_, o (:)(kTg) = 0, and therefore, limy,_, @(kTg) =0@. O
Clearly, Proposition 1 states that for the convergence of the plant pa-

rameters estimates @(kTp) to their true values © it is sufficient that the
regression vector Z(kTp) is persistently exciting to the amount that

k
: T
klingo ; Amin(Z(T0)Z" (0Th)) = 0.

Therefore, since adaptation and stability of the adaptive scheme depend
on the convergence of the parameter estimates to their true values, it is
necessary to prove excitation of Z(kTp). This is done in Subsection 5.3
that follows (see Theorem 2, therein).

Remark 5.1. It is pointed out that, although controllability and observ-
ability of the sampled system (5.1) is instrumental for our analysis, no
assumption is made in the present paper on the canonical structure of the
triplet (®,,B,,C). This is in contrast to the standard policy of many
known adaptive systems, in which controllability or observability canonical
forms are assumed for the matrix triplet involved in the estimation pro-
cedure (see for example [35], [36]). The reason for not assuming here a
canonical structure for the triplet (®,,B,,C) is mainly due to the fact,
that canonical forms for multivariable systems are interwoven with the
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knowledge of a set of controllability or observability indices of the matrix
triplet sought (for example, in [35], [36] a set of observability indices is
needed to be known). As a consequence, when identification procedures
based on canonical structures are proposed, much more prior knowledge
relative to the plant is necessary as compared to our approach.

5.2 Algorithm of the synthesis of the adaptive con-
troller

On the basis of the estimated parameter matrix @(kTg) obtained by
(5.23), as well as on the basis of the relations (5.4)-(5.6) and (5.22) and
of anyone of the algorithms reported in the literature for the construction
of a minimal realization, one can obtain the estimates needed for the com-
putation of the unknown matrices A, = Ai(kTg), ®, = ®,(kTp) and the
unknown vector f)l = Bi(kTg) involved in the algorithms presented in the
previous Sections. Moreover, since the matrices M, Q,, S and S$* are con-
structed on the basis of A;(kTp), ®;(kTy), and b;(kTy), then provided that
the matrix triplet (®(kTp), B(kTy), C(kTy)) is controllable and observable
for any possible value of @(kTg), we can obtain the following results sought:

F=FOKT,)) , v=v(OFk)) (5.29)

whereas no update is taken otherwise.
Overall, the procedure for the synthesis of the adaptive decoupling pe-
riodic multirate-input controller, consists of the nine steps given below:

Step 1 Choose the input multiplicities of the sampling N; such that
N; > n; and the sampling period 7 such that 7 = Ty/(6n — 1)V.

Step 2 Update the estimates of the matrix V using relation (5.23).
Step 3 Find the matrix Q using relation (5.22).

Step 4 Obtain a minimal realization for the matrix triplet (®,,B,,C)
using anyone of the minimal realization algorithms reported in the
literature (see e.g. the algorithms in [29]-[31]).

Step 5 Find the matrices A; and the vectors Bi, as well as the matrix ®
using relations (5.4) and (5.5), respectively.

Step 6 Find the matrix Qs on the basis of the algorithm presented in
Section 3.

Step 7 Find the matrices S and S* using relations (4.17) and (4.18), re-
spectively.
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Step 8 Find the matrix F and the vector v using relations (4.21) and
(4.20), respectively.

Step 9 Find the matrix F(¢) of the periodic multirate-imput controller
sought and the persistent excitation signals v;(t) using relations (4.19)
and (4.2), (4.3), (4.4), respectively.

5.3 Stability analysis of the adaptive control scheme

We now investigate the stability of the closed-loop system for arbitrary
initial conditions on the plant. To this end, the following fundamental
result, can be established

Theorem 2 In the closed-loop adaptive control system the regressor se-
quence ¢(vT) is persistently exciting, i.e., there is a 6 > 0, such that

(6n—1)N
Z(kT))Z" (kTy) = > ¢(kTy — vr)¢" (KTy — vr) > 6L (5.30)

v=0

Proof: In order to prove relation (5.30), we work as follows: Set u;(t) =
d’(t)v;. Then, relation (5.7), yields

n—1
yi(VT) = Z(Jl)(nfl)p+i7(n7971)p+iyi[(V —2n — Q)T] +
0=0
P n—1
+ Z (n=1)p+i,(n—o— 1)p+myn[( —2n — Q)T] +
k=1,k#i 9:0
n—2

+
NE
ML

(J2)(n—l)p+i,(n—g—2)m+juj[(V —o—1)7]+

<.
Il
-
S
|
= o

+
I
(]

(V) (n-1)ptis(n—o-1)m+juil(v —n — 0)7] +

<
Il
-
7
|
-~ o

NE

+ (V*)(nfl)p+i,(n7971)m+juj[(V —2n — @)T] (5.31)

1 0

<.
Il

S
Il

where in general (J1)rq, (J2)rq, (V)rq and (V*),,, are the r — g elements of
the matrices J;, J2, V and V*, respectively. Introducing the pseudovari-
ables By, (v7),j € Iy and By, (v7),k =1,2,...,p, Kk # i, relation (5.31),
can be decomposed as follows:

n—1
51 U VT Z Jl (n 1)p+i,(n—o—1 p+zﬂz uj [(V 2n — Q) ] uj(VT) (532)
0=0
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n—2

Yi;07) = D (T2 n-typis(no-2ymtBiu; (v = 0 = 7] +

ﬂi,yk(’”') -

while

0=0

n—1

+ Z(V)(nfl)p+i7(nfgfl)m+jﬁi,u3' [(V —n—- Q)T] +

0=0
n—1
+ Z(V*)(n—l)p+i,(n—g—1)m+j6i,uj [(V —2n - Q)T] )
0=0
for j€dn (5.33)
n—1
(Jl)(nfl)eri,(an*l)eriﬁi,yn [(V_ 2n— @)T] =yx(v7) (5.34)
0=0
n—1
yi,yn(’”') = Z(Jl)(nfl)p+i7(n7971)p+n5i,yn[(V —2n—0)7] ,
0=0
for k=1,2,...)p, kK Z£i (5.35)
m p
=D Wi (D) D Vi (5.36)
j=1

k=1,k#1

From relations (5.32)-(5.36), we obtain

yi(vT)

m n—2

j=1 =0

n—1

+ Z(V)(nfl)p+i,(nfgfl)m+jﬁi,uj' [(V -—n—- Q)T] +

+ Z(V*)(nfl)p+i7(nfgfl)m+jﬁi,u3' [(V —2n — Q)T]} +

k=1,k#i 0=0
p

+ > {Bey(vr)

k=1,k#1

27
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i
L

- (Jl)(n—l)p+n,(n—g—1)p+n6n,yi [(V —2n — Q)T]} (5'37)

Ji
(=]

whereas relation (5.32), yields

B = ()3 () -
i Jl (n=1)p+i,(n—o— 1)p+zﬂz uj [(1/—271- )T]} (538)
0=0

On the basis of relations (5.7), (5.37) and (5.38), the regressor vector
¢(vT), can also be expressed as

o(v7) = SB(wr)

where

BT(wr) =8 (wr) ... B(v—6n+2)7]]
B (07) = [Buy (07) - B, (e7) By, (07) ... B, (o7)],

o=v—6n+2,...,v

Euj' (QT) = [61,uj‘(97—) ﬁpﬂlj(g,r)]? Q:V_6n+27"'7’/7 ]eJm

~

ﬂyl (QT) = [/627?!1(97—) ﬂpym(m—)] y 0= 1/—6n—|—2,...,y

~

By, (01) = [Bry.(e7) - Bp-1,y.(07)],

o=v—6n+2,...,v, K=2,3,...,p

and where £ € RGnmtnp)x(6n—L)p(ptm-1) j5 5 fyll row rank matrix.
Clearly, the vector ¢(v7) is persistently exciting if B(I/T) is also persis-
tently exciting. So, in what follows, it suffices to investigate excitation of
B(vT). To this end, observe that (5.38), can be written as

w;(vr) = I Bvr) (5.39)
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where, T € R(On=1mp+tm=1) is 4 row vector whose elements are known.

In order to prove excitation of B(VT), it suffices to prove that the following
relationship holds

To/T
Z B(kTy + vr)BT (kTy + vr) > el (5.40)

v=1

for some ¢ > 0. To this end, observe that from relation (5.39), we can easily
obtain

To/T To/T
W (kTo +vr) = /() BRTo +vr)BY (kTy +v7)}eh. (5.41)
v=1 v=1

Observe also that the following relation holds

0, if v=1,2,...,(6n —1)(N; —n; —1)I; — 1
]., Zf V:(Gn—l)(Nj—nj—l)lj,...,

U,j(kTo +l/7') = {
(6n - 1)(N] - ’I’Lj)lj -1

Hence, relation (5.41), can also be written as

To/T
(6n —1)l; + > w} (kT + vr) =
v=(6n—1)(N;—n;)l;

To/‘l’

] BTy + vr)B (kTy + v7)};

v=1

We can then conclude that

To/T
YT BT + vr) BT (KTy + vr)}by > (60 — 1)1
v=1
and that
( }{Tiﬁ BTy + vr) F (KT, + wr) -2y > O = UL
1277 R 1E7272 ] | 2 [

It is now clear that, the vector ¥, /[|%;]|, is a vector whose norm equals
to unity. Hence there is a unity norm vector such that

To/T
XY BTy + vr) BT (KTy + vr)bx —

v=1

(61’L - ].)l]

—— > 0.
15112
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In conclusion, relation (5.40) holds. As a consequence, the vector 3(v7)
is persistently exciting. Therefore, ¢(v7) is also persistently exciting and
hence there is a 6 > 0 (which, in general, depends on the matrix f]), such
that relation (5.30) to hold. This completes the proof of the theorem. 0O

We are now able to establish the stability of the control system.

Proposition 2 The closed-loop adaptive control system presented above is
globally stable, i.e., for arbitrary finite initial conditions all states are uni-
formly bounded, and discrete decoupling control is asymptotically attained,
i.e. limp_ oo {y(kTo) — ym(kTy)} = 0. Furthermore, the proposed adaptive
scheme provides exponential convergence of the estimated parameters.

Proof: Since, according to Theorem 2, the regressor sequence is persis-
tently exciting, then the difference ©(kTp) — © converges to zero. That
is, the plant parameters estimates converge to their true values. As a con-
sequence of this and of the fact that (:)(kTg) is uniformly bounded, the
controller parameter estimates (5.29) also converge to their true values.
Therefore, at the sampling instants uniform boundedness of all states and
limg oo {y (kTo) — yar(kTo)} = O follow on the basis of (4.5) and of the
fact that the ith diagonal element of the desired model is assumed to have
a strictly stable denominator. Uniform boundedness of u(t) and x(t) then
follows from (2.1), (4.12), (4.13) and (4.21) and from the fact that w(kT})
is bounded by assumption. Finally, exponential convergence of the plant
parameter estimates follows form (5.26), which together with (5.30), en-
sures that ©(kTy) — © exponentially as k — oco. O

Remark 5.2. Commenting on the assumptions needed here, in order to
implement the adaptive decoupling periodic multirate-input controller, we
point out the following:

Assumption 1la, on the controllability and the observability of the con-
tinuous - time plant as well as on the knowledge of its order is a standard
assumption in the area of adaptive control. It is worth noticing that here,
controllability of the pair (A, B) is also necessary for obtaining a solution
of the integral equation (3.2), with respect to the controller matrix F(¢).
Note also that, uncontrollability (and/or observability) of the pair (A, B)
implies uncontrollability (and/or observability) of the plants obtained from
(2.1), by discretizing with sampling periods Ty, Ty and 7. From the previ-
ous analysis, however, it becomes clear that for the implementation of the
adaptive control scheme, these discretized plants must be controllable and
observable.

Assumption 1b, on the knowledge of a set of LMCI indices of the (A, B),
is instrumental for the implementation of the proposed adaptive scheme,
since, on the one hand, the forms of the multirate controller (4.1) and the
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persistent excitation signals (4.2), (4.3), (4.4) depend on the LMCI used,
and on the other hand, the control strategy in the case of unknown sys-
tems is based on the fundamental sampling period 7, which also depends
on the knowledge of a set of LMCI. Note also that, whenever Assumption
1b is not fulfilled, one can readily compute a set of LMCI by estimating
the continuous-time system matrices A and B. This can be done either
by using a continuous-time counterpart of the identification procedure pre-
sented in Section 5.1 or following the structural identification approach
proposed in [35]. For the sake of simplicity, we assume here that the initial
information about a set of LMCI of the pair (A, B) is available.
Assumption 2 on the existence of a sampling period T}, for which con-
trollability and observability of the matrix triplets (®,B,C) and
(®,,B,,C) are guaranteed, is also instrumental for our analysis. In par-
ticular, observability of the pair (®,C) must be guaranteed for obtaining
the simple necessary and sufficient condition (3.15), for the solvability of
the equation (3.13), and hence for the solvability of the decoupling control
problem in the case of known systems. On the other hand, controllability
and observability of the matrix triplet (®,,B,, C) is necessary for resort-
ing to the equivalent input-output representation (5.7), for the state space
system of the form (5.1), as well as for being able to apply any of the min-
imal realization algorithms presented in [29]-[31], which are needed here to
obtain the estimates of the triplet (®,,B,, C). Note that, for ensuring con-
trollability and observability of the triplets (®,B, C) and (®,,B,,C), the
fundamental sampling period Ty must be selected such that simultaneously

(a) 25 9=0,1,...,(j =v-1)

is not the dif ference of any two eigenvalues of the matriz A.

(5.42)
(b) 20n=DNerd = 0,1,
is not the di f ference of any two eigenvalues of the matrizc A.
(5.43)
(c) ¥(Tn) #0. (5.44)

This implies that, in the multirate adaptive case treated here, certain
sampling frequencies must be avoided, as compared to the non-adaptive
non-multirate case. It is pointed out that, conditions (5.42) and (5.43), are
standard conditions for the selection of a regular sampling period, in order
to avoid loss of controllability and observability under sampling (see [37],
for a detailed analysis of this issue).

Finally, it is pointed out that, the assumption on the strict stability
of the denominators of the diagonal elements §;(z) of the desired diago-
nal model, is necessary for ensuring the global stability of the proposed
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adaptive scheme. Without this assumption, decoupling control may be
still possible but the stability of the closed-loop adaptive system cannot be
guaranteed.

Remark 5.3. The results of the present paper hold also in the special
case where Ny = N, = ... = N,, = Ny, taking into account several
modifications needed in the previous analysis, in order to fit this particular
case. It is important to note that in this case, less prior information is
needed for the implementation of the adaptive control scheme presented
above, since there is no need of the prior knowledge of a set of LMCI of the
pair (A,B). We can simply take Ny > n. With this choice, the matrices
S and S* have full row rank for almost all T, € [T ,T%]. Then, the
matrix F and the vector v have the following forms

f\ — ET [ Q(SST)_le :|
0 )

~

v=AT ¢ , A =exp(ATy/Ny).

6 Conclusions

The discrete adaptive decoupling problem of linear time-invariant con-
tinuous-time multi-input, multi-output systems has been investigated and
an indirect control scheme based on periodic multirate-input controllers
has been presented. The approach proposed to solve the problem has, as
compared to known related techniques, the following main advantages:

1. It reduces the solution of the problem to the solution of a simple
non-homogeneous algebraic matrix equation, rather than a matrix
Diophantine equation, as is needed in standard techniques.

2. It does not rely on pole-zero cancellation and hence it can be read-
ily applied to solve the adaptive decoupling problem for nonstably
invertible plants and for diagonal reference models having arbitrary
poles and zeros and relative degree.

3. It is applicable in general to systems with different number of inputs
and outputs, since the multirate controllers used reveal squaring down
capabilities.

4. Tt offers a solution to the problem of ensuring persistence of excita-
tion of the continuous-time plant without imposing any special re-
quirement on the reference signal w(kZp) (except boundedness) and
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without making any assumption concerning either the existence of
specific convex sets in which the estimated parameters belong or the
coprimeness of the polynomials describing the ARMA model.

It is worth noticing that, in the present technique gain controllers are
essentially needed to be designed, as compared to dynamic compensators
needed in known techniques. Consequently, no exogenous dynamic is intro-
duced to the control loop by our method. This improves the computational
aspect of the problem, since the proposed technique does not require many
on-line computations and its practical implementation requires only com-
puter memory for storing the history of the multirate-input controller over
one period of time.

The present paper gives some new insights into the adaptive decoupling
problem of linear systems. The present results can be extended to solve
other related adaptive control problems, as, for example, the problems of
model reference adaptive control and adaptive decoupling using multirate
sampled-data hold functions. Adaptive control schemes based on alter-
native parameter estimation algorithms (as for, example, the algorithm
proposed in [36]) and without the need of persistent excitation signals are
currently under investigation.
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