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0 Introduction

Let us denote by ya(+, s, ), for all A belonging to a set A of parameters,
the solution of a stochastic linear differential equation as:

{ diyx(t, s, ) = Axya(t, s, z)dt + Cayx(t, s, x)dW; (0.1)

ya(s,s,x) =

where: W is a Wiener process (finite- or infinite-dimensional) defined on
the stochastic basis (2, &, F:, P) and adapted to F; Ay and C) are linear
operators on an Hilbert space H; x belongs to L?(Q, F, P, H).

By a generalized version of the Datko Theorem (see [2] and [5]) we know
that, for a fixed A € A, the two following statements are equivalent:

i) ]E/ lya(t, s, 2)||> dt < exE||@||* for some ¢y € R, for all ¢ > s > 0 and
0
for all z € L%(Q, 5, P, H)

i) AMy > 0, ay > 0 s.t. Ellya(t,s,z)||* < M2e=20x{T = $)E||z)|? for all
t>s>0andall z € L?(Q, F,, P, H).

Recently (see [8]) it has been proved, in the deterministic case (C' =0
in equation (0.1)), that: if 4) holds for all A € A and uniformly in A (that is
with ¢y = ¢), then i) is verified for all A € A with M, = M and a) =a > 0.

*Received April 10, 1996; received in final form May 17, 1996. Summary appeared
in Volume 8, Number 3, 1998.

tThis work was partially written while the author was visiting the Scuola Normale
Superiore



G. TESSITORE

Here we show that a similar result holds for a family of stochastic sys-
tems of the kind of (0.1). The proof is based (as in [5] and [8]) on the semi-
group properties of the family of linear operators T\ (¢, s) : L2(Q, F,, P, H) —
L?(Q, F;,P, H) defined by T\(t,s)z = yx(t, s, ). Notice that in the deter-
ministic case the above spaces coincide (being both equal to H); this is the
main difference between the situation arising from deterministic equations
and the one arising from stochastic equations and is the reason why our
proof can not follow [8] in straight-forward way.

The interest on parameter depending stochastic differential equations
(SDEs) arises in a very natural way, for instance, in ergodic control and
in adaptive control of stochastic systems (see [7]) and [3]). In that same
framework it is sometimes useful to know that a parameterized class of
SDEs have solutions that decay exponentially to zero uniformly on the
parameter. Indeed in §2 we exploit the general result, proved in §1, to
obtain the uniform decay of the optimal states of a class of linear, infinite
dimensional, stochastic systems when a uniform detectability assumption
holds. Finally (see Example 2.1) we show that, for a particular parame-
ter depending controlled stochastic system coming from ergodic control of
affine stochastic partial differential equations (see [7]), the above mentioned
uniform detectability condition is verified. Such an example of application
was, in fact, our starting motivation.

1 Main Result

Let Z be a Banach space (norm | - |) and let, for all t > s > 0, and for all
A € A (A being a fixed set of parameters), Tx(t, s) be a linear operator with
domain Vs C Z. Assume that the family {T\(¢,s) : A € A; ¢t > s > 0}
verifies the following conditions (V¢ > s > 0, VA € A and for all © € )):

T (-, s)z is a continuous map [s, co[— Z (1.1
T)\(t,S)ys C yt
Th(s,s)r = x and

\)
~— ~—

Ti(t,s)x = Ta(t,7)Ix\(T,s)x, VT € [s,1] (1.3)
[T\ (¢, s)x| < ReP(t = S)|a:|, for some R>0,pe R (1.4)
o0
/ |T\(t,s)z|" dt < cp]z|?, for some ¢; >0, p>1 (1.5)
8§

then the following holds:

Lemma 1.1 There exist co,c3 € R such that, Vt > s > 0, VA € A, Vz €
Vs:

ITa(t, s)e]| < calal (L6)

2
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|T\(t, s)z| < c3(t —s)~1/P|xl. (1.7)

Proof: By (1.3) and (1.4) we obtain that forallt > 7> s >0, YA € A
and Vz € Y;:

ITa(t, s)z|” < RPePP(E = T)|Ty\(r, 5)a|F.

Now, for all ¢ > s + 1, we have:

t
Ty (t s)oP = / ITx(t, )T (7, 8)a|” dr <
t

-1

IN

t
Rpepp/ |T\(7, 8)x|” dr < RPePPcy|x|P
t—1

the last inequality following from (1.5). The above relation combined with
assumption (1.4) immediately yields (1.6). Moreover:

(t — 8)|Tx(t,8)z|" = / |T\(t, 7)Tx(T, 8)z|" dr <

i
<d [ [Trs)al dr < deafap
3

so (1.7) follows letting c3 = czc}/p. m|

We can now conclude our argument.

Proposition 1.2 If assumptions (1.1) - (1.5) hold then there exist M > 0
and a > 0 such that, for allt > s >0, A€ A, xz € Vs

ITa(, 8)z] < Me™ @t = 8)|g], (1.8)
Proof: Let L = 2Pc%, by (1.7) we get that, Vo € Vs, VA € A:
1
|7\ (¢, s)z| < §|:c| whenever ¢ —s > L.

Soif nL < (t —s) < (n+ 1)L for some n € N, applying n times the above
relation, we obtain:

—1
IT\(t, 8)z] < 227 "] < 26,2~ E= L7 2] < Moe™E=8) |z (1.9)
where @ = L™t log(2) > 0, My = 2¢; (for the last inequality see also [5]).

Combining inequality (1.9) (holding whenever t — s > L) and assumption
(1.4) we can conclude that, letting M = My V cq, our claim holds. O
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Remark 1.3 The above argument follows [8] in the proof of Lemma 1.1
except that we avoid using the uniform boundedness theorem (since it is
not clear on which space it can be applied). The conclusion then follows

[5]-

Finally in [8] it is shown that assumption (1.4) can not be avoided.

Example 1.1 Let (as in §0) H be o separable Hilbert space (norm ||-||,
product ((-,-))) and (Q, &, F:,P) be a standard stochastic base ({F; :t > 0}
being a filtration in £). Moreover define:

Z=L*Q,& P, H) and Y, =L*Q,F,,P,H) (Vs> 0)

and, for all X € A, T\(t,s)x = yx(-,s,z) (where yr(-,s,x) is the solution
of (0.1)).

Under very general assumptions on the coefficients in (0.1) (see the next
section or [6]) T\(t,s) is a well defined bounded linear operator from Y
into Yy, moreover (1.1), (1.2) and (1.3) hold.

Therefore if, for all t > s > 0 and all x € L2(Q, F,, P, H):

E||lyx(t, s, z)||* < Relt = S)pE||x||2 for some R >0, peR (1.10)

/ E|lyr(o,s,2)||* do < ¢ for some ¢ > 0, (1.11)

then by Proposition 1.2 there exists M > 0 and a > 0 such that:

E|ya(t,s,2)|* < M2e20( = S)g|| g2,

2 Uniform Detectability

We want to apply the above result to deduce the uniform exponential decay
of the optimal states of a class of detectable stochastic linear quadratic
control problems. Let us consider the following “state equation”:

{ dyy(t) = (Ay + Bu)dt + Cydp,
y(0) =z

and the following “infinite horizon cost functional”:
oo 2 9
J(z,u) :]E/ (H\/Ey(s)H + [lu(s)]| )ds (2.2)
0

where y represents the state of the dynamic system described by (2.1) and
u is the control introduced in it.

(2.1)

Let us specify some assumptions and notations (for simplicity we con-
sider a one-dimensional noise):
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e H and (Q,&,F,P) are as in Example 1.1; 8 is a one-dimensional
brownian motion defined on (2, &, F,P) and adapted to F.

e A:D(A) C H — H is a regularly dissipative operator. That is, we
recall, there exists an hilbert space V' C H (V is endowed with norm
| - |) with continuous and dense inclusion. Moreover it is defined in
V a continuous bilinear form a(-, -) verifying —a(v,v) > c|v|* —£||v||?
for some ¢ >0, £ > 0 and all v € V. Then A is defined as follows:

D(A) = {az € V : the map y — a(z,y) is continuous in H}
Vo € D(A) Ax verifies a(z,y) = ((Ax,y)) Yy € V.

We also recall that such an A generates an analytic semigroup of
pseudo-contractions.

e C € L(V,H), and the following “ellipticity” condition holds:
ICz||* < —2na(z,z) + x||z|* for some n€l0,1], xR

e BeL(H), SeL(H) with S self adjoint non negative.

e If K is an Hilbert space by M%(s, T, K) (resp. M%(s,00,K)) we
denote the closed subspace of L?(Q x [s,T],€ ® B([s,T]),P @ pu, K)
(resp. of L%(Q X [s,400),& @ B([s,+),P ® u, K) ) (where p is
the Lebesgue’s measure and B denotes the standard Borel o-field)
given by all equivalence classes that contain a predictable process
with respect to the filtration F.

e z belongs to L2(Q, 5o, P, H).

Under this assumption we can show (for all fixed T" > 0) the following
existence and uniqueness result (see [6]):

Proposition 2.1 For all u € M3(0,T, H), there exists a unique mild so-
lution y € M3%,(0,T,V) of (2.1). Moreover the map t — y(t), considered as
a map with values in L?(Q,&,P, H)), is continuous.

We give here the following definitions:

Definition 2.1 We say that (A, B,C) is stabilizable relatively to /S if,
for all x € L2(Q, Fo, P, H), Ju € M%(0, 00, H) such that J(z,u) < co.

Definition 2.2 We say that (A,V/S,C) is detectable if there ewists Q €
LH), M > 0 and a > 0 such that, letting, for all s > 0 and for all
r € L3, Fo,P,H), V(-,8)x be the solution of:

{ AV (t,8)x = (A — QVS)V(t,s)zdt + CV (t, s)zdp;

Vis,8)x = (2.3)
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then E ||V (t, s)z|® < M2e—2a(t — S)E||x||2 for allt > st (the existence and
uniqueness of the solution of equation (2.3) is proved exactly as Proposition
2.1).

Remark 2.2 In [6] it is shown that if (A, B, C') is stabilizable relatively to
V'S, then there exists X € £(H) self-adjoint and non negative such that:

eM2iI(1(f H)J(:c,u):]E((Xx,x)).
u %(0,00,

Moreover if for all s > 0 and all x € L%(Q, F,,P, H) we denote by &(-, s, )
the solution of the following “closed loop equation”:

dt&(ta S, ZL“) = (A - BB*X)f(t, S, iL“)dt + Cf(t, S, w)dﬂt
5(57 S,.’L') =7

then £(-, s,x) € M}(s, 00, H) and:

(2.4)

EM;I(l[f ) J(m,u) = J(:U: —B*X{(-,O,x)) =
u 2,(0,00,

_ E/Ooo (H\/Eg(t,o,x)HQ + ||B*X§(t,0,a:)||2> dt

In other words, &(-,0,) is the optimal state and —B*X¢(-,0,z) is the
optimal control corresponding to our control problem. |

Let us now fix a set A and introduce the following class of control
problems:
{ diy(t) = (Axya + Bau)dt + Cryxdp
ya(0) ==

new =2 [ (Voo i) e e

where H and (3 are defined as above and Ay, B, C\, Sy verify, for all
A € A, the previous assumptions. Moreover we suppose that the following
hypotheses hold:

(2.5)

Hypothesis 2.1 The operators By are bounded uniformly in A € A (that
is supy || Ballccmy < o0).

Hypothesis 2.2 Forall\ € A (Ay, By, C\) is stabilizable. Moreover there
exists v > 0 such that, for all A € A:

™ HEw S YE | 2|
u (0,00,

fNotice that, by the Datko Theorem applied to stochastic systems (see [5]), this is
equivalent to: sup,, Efsoo |V (t, s)]|? dt < oo

6
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Hypothesis 2.3 For all A € A, (A, S\, C\) is detectable.

Moreover the operators Qx (@ is the operator guaranteed by definition 2.2
and corresponding to the control problem with index \) can be chosen so
that: supyep [|Qxll ooy < +o0.

Finally, defining, for all X € A, V) as in (2.3), there exists U > 0 and
b > 0 such that E||Vy(t, s)z||> < U2e=200=5) ||z||* for all t > s, all X € A
and all x € L*(Q, F,,P, H) .}

Now let Z and Y, as in Example 1.1. Define, VA € A, &, as in (2.4)
(corresponding to the control problem with index A). In order to apply the
result of Example 1.1 to the processes &\(+, s, %), obtaining their uniform
exponential decay, we need to show that conditions (1.10) and (1.11) hold:

Lemma 2.3 If hypotheses 2.1, 2.2, 2.3 hold then {&x(+, -, ) : A € A} verify
conditions (1.10) and (1.11).

Proof: The proof follows [1]. We can write:

dtg)\(ta S, :E) = (AA - Q)\\/g)é}\(t: S, .’I,')dt + ()0>\(t7 S, .’I,')dt+
+C>\£>\(t787$)dﬂt
Ex(s,s,z) ==z

where @y (t,5,2) = (Qxv/Sx + BaBX))Ex(t,s,2). So &\(t,s,z) can be
represented, by a standard variation of constants formula as:

Ex(t,s,x) = Vi(t,s)x -I-/O Wi (t,0)pa(o, s, z)do. (2.7)

Notice that by hypotheses 2.1, 2.2 and remark 2.2 it follows that there
exists § such that, for all s >0, A\ € A, z € L*(Q, F;,P, H):

E / loa(t, 5, 2)|12 dt < 6E| ]|, (2.8)

Let us now come back to relation (2.7). By hypothesis 2.3 we have:

E||§)\(t7 S,ZL“)“2 <

t 1/2 \ 2
< o0 <e-2b<t—8>Enwn2 " ( [ (Bl ) dff) )

t
<207 <e_"(t_'°’)1E||96||2 + b‘l/ e "mIE | por (0,5, 2)|° dff)

S

$The above assumption has been exposed in this way for simplicity’s sake, but it can
be expressed in a slightly weaker form using the results included in the previous section

7
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so condition (1.4) follows from (2.8).
Finally integrating the above relation we have (again by (2.8)):

/ E|[&x(t, s, 2)]° dt <U? (b1 + 207 28) B |||

that is exactly what we wanted to show. |

So by Proposition 1.2 we can conclude:

Corollary 2.4 If hypotheses 2.1, 2.2, 2.3 are verified then there exist M >
0 and a > 0 such that Vt > s >0, VA € A, Vo € L%(Q, F,P, H):

E||éx(t, s,2)|° < M2e~ (= S)ag)|z)2.

Example 2.1 Let A=R", Ay=A—-\,B\,=DB,C\=0C, Sy =5 and
assume that (A4, B, C) is v/S-stabilizable and (A4, /S, C) is detectable.
If uy(t) = e~ Mu(t) and y is the solution of (2.1) then the solution yy of:

{ deyx(t) = (Axyx + Bauy)dt + Cyrdp,
yr(0) =z

is given by yx(t) = e~*y. Therefore, it is very easy to show that hypotheses
2.1, 2.2 and 2.3 are verified (the above parameterized class of control prob-
lems arises in the ergodic control of an affine stochastic partial differential
equation see [7]).

For instance if H = L*([0,1]), D(4) = H?([0,1]) n H([0,1]); A = g—;;
C= 08% with 02 < 2; B = I, then we obtain the following stochastic heat
equation with diffused control:

0%y
(0, = (52:0.0 = an(6.0)) dr

+ult, Qe + G210 ¥Ce (0,1
y)\(t,()) = y(ta 1) =0
yx(0,¢) = z(¢)

Moreover (A, B, C) is I-stabilizable and, if § = I, (4,V/S,C) is detectable
and all our assumptions are satisfied (see [6] and [4]).

References

[1] G.Da Prato and A. Ichikawa. Stability and quadratic control for linear
stochastic equations with unbounded coefficients, Bollettino U.M.I.
6(1985), 987-1001.



PARAMETER DEPENDING DATKO THEOREM

[2] R. Datko. Extending a theorem of Lyapunov to Hilbert spaces, J.
Math. Anal.and Appl 32(1970), 610-616.

[3] T.E.Duncan, B. Maslowski, and B. Pasik-Duncan.Adaptive boundary
and point control of linear stochastic distributed parameter systems,
it STAM J. Control Optim. 32 (1994), 648-672.

[4] F. Flandoli. Regularity theory and stochastic flows for parabolic
SPDE’S, Stochastic Monografs Vol. 9. Gordon and Breach Publish-
ers, 1995.

[5] A. Ichikawa. Equivalence of L, stability and exponential stability for
a class of nonlinear semigroups, Nonlinear Anal. 8 (1984), 805-815.

[6] G. Tessitore. Some remarks on the Riccati equation arising in an op-
timal control problem with state- and control-dependent noise, SIAM
J. Contr. Optim. 30 (1992), 717-744.

[7] G. Tessitore.Infinite horizon, ergodic and periodic control for a
stochastic infinite dimensional affine equation, Preprint SNS 1995.

[8] R. Triggiani. A sharp result on exponential operator-norm decay of
a family T;(t) of strongly continuous semigroups uniformly in A, in
Optimal Control of Differential Equations, (Nicolae H. Pavel, ed.).
New York: Marcel Dekker, New York, 1994

DIPARTIMENTO DI MATEMATICA APPLICATA “G.SANSONE,” VIA DI
SANTA MARTA 3, 50139 FIRENZE

Communicated by Hélene Frankowska



