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� Introduction

In this paper� we discuss the stabilizability and its robustness for multi

input multi
output �MIMO� systems over integral domains
 A criterion
for the stabilizability of single
input single
output �SISO� systems modeled
over integral domains was derived by Shankar and Sule ��� using ideal the

ory
 Their approach to the stabilizability theory is called the �coordinate

free approach
� Sule �	� derived a criterion for the stabilizability of MIMO
systems modeled over commutative rings as well as over unique factoriza

tion domains� by introducing the notion of the �elementary factor
� The
robustness of stabilizability was analyzed by Shankar and Sule ��� in the
case of SISO systems and by Vidyasagar et al
 ��� in the case of MIMO
systems


In this paper� we enlarge the notion of �elementary factor� by introduc

ing the notion of �generalized elementary factor�� so that a criterion for
the stabilizability is given as a generalization of Theorem� in �	�
 We also
show that if a plant is strongly stabilizable� its doubly coprime factorization
�DCF� exists
 These will be described in Section �


In the analysis of the robustness of the stabilizability for MIMO systems�
we do not assume that a plant and its stabilizing controller have their
right
�left
coprime factorizations as in ���
 Instead we make use of the
conditions modi�ed mainlyfrom ��� to be applicable to MIMO systems
 It
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will be shown that there exist neighborhoods of a plant and its stabilizing
controller modeled over an integral domain such that each element in the
neighborhood of the plant is stabilized by any element in the neighborhood
of the stabilizing controller
 This result is applicable to MIMO n
D systems

These will be described in Section �


� Preliminary

We consider the set of stable causal transfer functions as an integral domain
�i
e
 not including zero divisors�� which is su�ciently large� in contrast with
the set of stable causal transfer functions considered in �	� which can include
zero divisors


Let A denote an integral domain with an identity element
 This domain
represents the set of stable causal transfer functions
 For arbitrary but �xed
nonzero f in A� Af denotes the ring of fractions of A with respect to the
set ffx jx is any nonnegative integerg
 Let F be the �eld of fractions of
A� which consists of all possible transfer functions
 The set of matrices
of size x � y over A� denoted by Ax�y� coincides with the set of stable
causal transfer matrices
 We denote by Ax�x� the set of nonsingular square
matrices of size x over A
 The set of matrices of size x�y over F � denoted
by Fx�y� coincides with all possible transfer matrices of size x� y
 Let P
� Fn�m denote the transfer matrix of a plant� which has m inputs and n

outputs� to be controlled
 Observe that a plant P can always be represented
in the form of a fraction P � Nd��� where N is a matrix over A and d is
a nonzero element of A


We will use small letters x and y to denote arbitrary positive integers�
and capital letters E and O to denote the identity matrix and the zero
matrix� respectively� throughout the paper


To de�ne the terminology about stability of transfer matrices� we in

troduce a feedback system composed of a plant and a controller
 Let bFad
be bFad � f�X�Y � � Fn�m �Fm�n j det�E �XY � �� �g� �	
��

and for �P�C� � bFad� let H�P�C� be

H�P�C� �

�
�E � PC��� �P �E � CP ���

C�E � PC��� �E � CP ���

�
� �	
	�

The matrix H�P�C� represents the transfer matrix of the feedback system

�P�C� from �uT� uT� �
T
to � eT� eT� �

T
as shown in Fig
�


In the following de�nitions� R denotes either A or Af 


De�nition ��� R�stabilizing controller� If the pair �P�C� � bFad and
H�P�C� � R�m
n���m
n�� then C is called an R�stabilizing controller of
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Figure �� Feedback system

the plant P or the plant P is R�stabilized by C
 If a plant P has an
R
stabilizing controller� the plant P is said to be R�stabilizable


De�nition ��� R�strongly stabilizing controller� If �P�C� � bFad�
H�P�C� � R�m
n���m
n�� and C � Rn�m� then C is called an R�strongly
stabilizing controller of the plant P or the plant P is R�strongly stabilized
by C�

De�nition ��� Doubly coprime factorization over R� If there exist
matrices N � eN � Rn�m� eD � Rn�n� D � Rm�m� X � Rn�n� eX � Rm�m�
Y � Rm�n� eY � Rm�n such that matrices D� eD� X � eX are all nonsingular
and the following equations hold�

P � ND�� � eD�� eN� �	
��� eX eYeN � eD
� �

D Y

N �X

�
�

�
E O

O E

�
� �	
��

then �	
�� is called a doubly coprime factorization �DCF� over R of the
plant P and the plant is said to have a doubly coprime factorization �DCF�

over R
 It is well known that Y X�� �� eX�� eY � becomes an R
stabilizing

controller of the plant P � where X � eX � Y � and eY are taken from above


In particular� when R is considered as A� one may omit the phrase �A
�
or �over A� in the above de�nitions


Here we present Sule�s criterion for the stabilizability of plants
 �Note
that only in the following proposition the symbol A denotes a commutative
ring
 Elsewhere it will denote an integral domain
�

Proposition ��� �Proposition � of �	�� Assume that the set of stable
causal transfer functions is a commutative ring A� Let P be a strictly
causal plant where the notion of strictly causal is de�ned as in ��	 �� Then

the plant P � Nd�� �N � An�m
 d � A� is stabilizable if and only if there

�In 
��� the de�nition of �strictly causal� is misprinted
 According to the author� the

�
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exists a solution X � An�n
 Y � Am�n
 A � An�m
 and B � Am�m for
the matrix equations

XN � Ad� Y N � Bd� NY � �E �X�d� �	
��

Moreover
 if the plant P is stabilizable
 then any stabilizing controller has
the form C � Y X��
 where X and Y satisfy ������ Conversely
 if ����� has
a solution X
 Y 
 then C � Y X�� is causal and is a stabilizing controller�

Note ��� The original criterion over a commutative ring in �	� requires the
plant P to be strictly causal as above
 However� since in our setting the
set of stable causal transfer functions is an integral domain A rather than
a general commutative ring� the strict causality in Proposition	
� can be
relaxed according to Section �
� of �	�
 As a result� the above proposition
can be rewritten as follows�

Proposition���� Assume that the set of stable causal transfer
functions is an integral domainA
 Then a plant P is stabilizable
if and only if there exists a solution X � Y � A� and B of matrix
equations �	
�� with det�X� �� �
 Moreover� if a plant P is
stabilizable� any stabilizing controller has the form C � Y X���
where matrices X and Y satisfy �	
�� and det�X� �� �


� Stabilizability

In this section� we �rst present a criterion for the stabilizability over integral
domains by introducing a notion of �generalized elementary factor
� Then�
all strongly stabilizing controllers of a given plant are characterized
 We
will show that if a plant is strongly stabilized by a stabilizing controller�
the plant has a doubly coprime factorization �DCF�


Let us introduce some notations and symbols which will be used in
the following
 Let T and W be matrices such that T � �NT dE �

T
and

W � �N dE �� where P � Nd�� � Fn�m� N � An�m� and d � A
 Let T
be the A
module generated by rows of matrix T and W be the A
module

generated by columns of matrix W 
 Further� let Tf
�
Wf

�
be the Af 


module generated by rows
�
columns

�
of matrix T

�
W
�

 For a matrix X

over R� let ImR�X� be the ideal in R generated by the m �m minors of

correct de�nition should be as follows �all symbols in the de�nition are as in 
����

DEFINITION �
 A matrix M in F is called causal if M has all entries in
R��A
 A causal matrix M is called strictly causal if It�M� � J � where
t � �� � � � �min�n�m�


�
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X � where R is either A or Af 
 We refer the readers to ��� �� for the theory
of modules


We now introduce the notion of generalized elementary factor


De�nition ��� Generalized Elementary Factor� Let I be the sets of
all m
tuples of integers �i�� � � � � im� such that � � i� � � � � � im � m � n

Further let J be all n
tuples of integers �j�� � � � � jn� such that � � j� � � � � �
jn � m � n
 Suppose that I � �i�� � � � � im� and J � �j�� � � � � jn� are any
elements of I and J 
 Let �TI � Am��m
n� denote the matrix such that its
�k� ik�
entry is � for � � k � m and zero otherwise� �WJ � An��m
n� the
matrix such that its �k� jk�
entry is � for � � k � n and zero otherwise
 In

addition� let I�
�
J �

�
be the subset of I

�
J
�
consisting of I � I such that

det��TIT � �� �
�
J � J such that det��WJW

T � �� �
�

 We note here that

matrix �TIT
�
��WJW

T �T
�
is composed of rows i�� � � � � im of the matrix

T
�
columns j�� � � � � jn of the matrix W

�

 For each I � I� and J � J ��

two ideals �TI and �WJ of A are de�ned as

�TI � f� � A j�T ��TIT �
�� � A�m
n��mg� and ��
��

�WJ � f� � A j�W T ��WJW
T ��� � A�m
n��ng� ��
	�

respectively
 Furthermore� ideal �IJ is de�ned as

�IJ � �TI � �WJ � ��
��

We denote by LT
�
LW

�
the set of �TI �s for I � I�

�
�WJ �s for J � J �

�
and by L the set of �IJ �s for I � I� and J � J �� i
e
� LT � f�TI j I � I�g�
LW � f�WJ j I � J �g� and L � f�IJ j I � I�� J � J �g
 We call every
element of L a generalized elementary factor of the plant P and every

element of LT
�
LW

�
a generalized elementary factor of the plant P with

respect to T
�
W
�



Note ��� The elementary factor and the generalized elementary factor are
dimensionally di�erent� one being an element of A and the other an ideal
of A� the name �generalized elementary factor� is used in the sense of a
generalization of the �elementary factor
� When the set of stable causal
transfer functions� A� is a unique factorization domain� the generalized

elementary factor �TI

�
�WJ

�
with respect to T

�
W
�
becomes a principal

ideal and as a result its generator is the elementary factor of T
�
W
�
as

de�ned in �	�


�
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The following proposition is a generalized version of Proposition � of �	�

The set of stable causal transfer functions� A� is not restricted to a unique
factorization domain and can be any integral domain


Proposition ��� Let I � I�
�
J � J �

�
� �i� For each nonzero element

�I

�
�J

�
of generalized elementary factor �TI

�
�WJ

�
with respect to T�

W
�
of the plant P 
 the A�I �module T�I

�
A�J �moduleW�J

�
is free of rank

m
�
n
�
� �ii� For each nonzero element �IJ of the generalized elementary

factor �IJ of P 
 the A�IJ �module T�IJ

�
W�IJ

�
is free of rank m

�
n
�
�

Proof� �i� Fix a nonzero �I � �TI 
 Let �TI denote the same matrix as in
De�nition �
�
 Let K � �IT ��TIT �

��
 Then� matrix T is factorized over
A�I as

T � ����I K���TIT �� ��
��

where all entries of matrix ���I K belong to A�I 
 Since ���I �TIK is the
identity matrix of Am�m

�I
�� the module generated by rows of matrix ���I K

is a free A�I 
module of rank m
 Every entry of matrix �TIT is in A�I as
well as in A
 Further det��TIT � �� � because I � I�
 It follows that the
A�I 
module T�I is free of rank m


Applying the same procedure as above to matrix W T � we have an anal

ogous result for the generalized elementary factor �WJ with respect to
W 

�ii� This is obvious from the construction of the generalized elementary
factors of the plant P from �TI �s and �WJ �s
 �

The following proposition gives theA�
stabilizability of any plant� where
� is a nonzero element of a generalized elementary factor of a plant
 The fol

lowing result is independent of the stabilizability �or the A
stabilizability�
of the given plant


Proposition ��� Let P be any plant� Fix a generalized elementary factor
�IJ of the plant P and any nonzero element � of �IJ � Then the plant P
has a DCF over A� and is A��stabilizable�

Proof� Let � be an arbitrary but �xed nonzero element of a generalized
elementary factor �IJ of the plant P 
 We recall that the plant P has a
DCF over A if and only if both the A
modules T andW are free of ranksm
and n� respectively �Lemma� of �	��
 This also holds replacing A by A�� T
by T�� and W by W� because A� itself is a commutative ring and the �eld
of fractions of A� coincides with F 
 By Proposition�
�� the A�
modules

��
��

I
�TIK � �

��

I
��TI � �IT ��TIT �

�� � �TIT ��TIT �
�� � I


�
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T� and W� are free of ranks m and n� respectively
 Therefore the plant P
has a DCF over A�
 Then the A�
stabilizability of the plant is trivial
 �

From Propositions 	
�� and �
	� for each nonzero � of each generalized el

ementary factor �IJ of the plant P � there exist matrices X � Y � A� and B

satisfying �	
�� in Proposition	
� over A� by regarding A� as A
 Using
this fact� we present a criterion for the stabilizability in terms of generalized
elementary factors as follows


Theorem ��� A plant P is stabilizable if and only if the set of generalized
elementary factors of the plant P 
 L
 satis�es�X

�IJ�L

�IJ � A� ��
��

Proof� �Only If� Suppose that the plant P is stabilizable
 Further� sup

pose that C is a stabilizing controller of P 


In the following� it is shown that the following relation holds�X
�TI�LT

�TI � A� ��
��

Let P � Nd�� and C � Ncd
��
c � where N and Nc are matrices over A�

and d and dc are scalars of A
 Then by Lemma	 of �	� the direct sum of

the modules generated by rows of �NT dE �
T

and rows of �NT
c dcE �

T

is free� so that the A
module T is �nitely generated projective
 According
to Theorem � on p
��� of ���� there exists a �nite subset F of A such that
it generates A and the Af 
module Tf is free for any f � F 
 We assume�
without loss of generality� that the set F does not contain zero
 By this
assumption� the Af 
module Tf is free of rank m for all f in F 


In order to prove the relation ��
��� it su�ces to show that the relationX
f�F

�f�� 	
X

�TI�LT

�TI ��
��

holds for a su�ciently large integer � since
P

f�F �f
�� � A
 To complete

the proof� we will construct an ideal of A depending on f of F such that for
each f in F � it is smaller than or equal to

P
�TI�LT

�TI and larger than

or equal to �f��
 Let f � F be �xed
 There are m Af 
linearly independent
elements in the Af 
module Tf 
 Let Vf be a square matrix of size m whose
rows are Af 
linearly independent elements of Tf 
 We assume without loss
of generality that the matrix Vf is over A �otherwise if Vf is a matrix
over Af � Vf multiplied by fx� with a su�ciently large integer x� will be
a matrix over A� so that we can regard such a matrix as �Vf 
��
 There

�
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exist a nonnegative integer � and a matrix Kf � A�m
n��m such that the
following equation holds�

T � f��KfVf � ��
��

Then ideal ImA�Kf � becomes the ideal we want to construct� as follows

First� we will show that

ImA�Kf � 	
X

�TI�LT

�TI � ��
��

Using the matrix �TI in De�nition �
�� we denote matrices �TIT and
�TIKf by TI and KfI � respectively
 Then the matrix equation TT��I �
KfK

��
fI holds
 It follows that TT��I det�KfI� � A�m
n��m� so that

det�KfI� � �TI from ��
��
 Since ImA�Kf � is an A
linear combination
of such det�KfI��s� inclusion relation ��
�� holds
 Next� we show that
ImAf

�f��Kf � � Af since it implies that

�f�� 	 ImA�Kf � ��
���

for a su�ciently large integer �
 As a relationship between matrices T
and Vf � there is an Af 
unimodular U such that T � U �V T

f O �
T

 It

follows that U � � f��KT
f Z �

T
holds for some matrix Z
 Hence by using

Laplace�s expansion� we have that ImAf
�f��Kf � � Af � so that ��
���

holds
 It follows from ��
�� and ��
���� that the inclusion relation ��
��
holds� and as a result ��
�� also holds


Similarly we have
P

�WJ�LW
�WJ � A and hence relation ��
�� holds

by the construction of the set of generalized elementary factors of the plant
P � L


�If� To show that the plant P is stabilizable� we will construct a stabilizing
controller of P from A�IJ 
stabilizing controllers of P 
 According to ��
���
we select one element� denoted by �IJ � in the generalized elementary factor
�IJ for each pair �I� J� � I� �J � such that the following equation holds�X

�I�J��I��J �

�IJ � �� ��
���

In the rest of this proof� we �x �IJ for each pair �I� J� in I� � J � as in
��
���
 Let I
 denote the set of all pairs �I� J� such that �IJ in ��
��� is
nonzero
 Then ��
��� can be rewritten asX

�I�J��I�

�IJ � �� ��
�	�

By Proposition �
	� the plant P has a DCF over A�IJ 
 Let P � Nd���
where N is a matrix over A and d is a scalar of A �note that A� not A�IJ � is

�
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used here�
 Then P is A�IJ 
stabilizable and as a result there exist matrices
XIJ � YIJ � AIJ � and BIJ over A�IJ satisfying

XIJN � AIJd� YIJN � BIJd� NYIJ � �E �XIJ�d� ��
���

For any positive integer �� there exists an aIJ in A for each �I� J� � I
 such
that

P
�I�J��I� aIJ�

�
IJ � �
 Using this fact and equations in ��
���� for a

su�ciently large integer �� we have the following three matrix equations�X
�I�J��I�

�aIJ�
�
IJXIJ�N �

X
�I�J��I�

�aIJ�
�
IJAIJ�d� ��
���

X
�I�J��I�

�aIJ�
�
IJYIJ �N �

X
�I�J��I�

�aIJ�
�
IJBIJ�d� ��
���

N
X

�I�J��I�

�aIJ�
�
IJYIJ � �

X
�I�J��I�

�aIJ�
�
IJ �I �XIJ��d

� �I �
X

�I�J��I�

�aIJ�
�
IJXIJ��d� ��
���

where all matrices of the form
P

�I�J��I���� are over A


Now let X �
P

�I�J��I��aIJ�
�
IJXIJ� and Y �

P
�I�J��I��aIJ�

�
IJYIJ �


If det�X� �� �� we immediately obtain a controller C � Y X�� by Proposi

tion 	
�� and the proof is complete
 So� in the rest of this proof� we suppose
that det�X� � � and reconstruct the matrix X to be nonsingular
 The fol

lowing technical results are derived in analogy with those of Lemma�
�
	�
in ���


Let �I�� J�� be an arbitrary but �xed pair of I

 Since the plant P has

a DCF over A�I�J�
� there exists matrices N�� D�� eN�� eD�� Y�� X�� eY�� andeX� over A�I�J�

such that P � N�D
��
� � eD��

�
eN� and

eN�Y� � eD�X� � E� eY�N� � eX�D� � E� ��
���

By simple calculation� it is found that for any matrix R of Am�n
�I�J�

� by

considering I� as I and J� as J � matrices XI�J� and YI�J� can be �X� �

N�R� eD� and �Y� � D�R� eD�� respectively� in ��
���
 In the following we
will construct a matrix R such that

X � aI�J��
�
I�J�

N�R eD� ��
���

is nonsingular over A
 Having constructed such a matrix and letting XI�J�

and YI�J� be matrices �X��N�R� eD� and �Y��D�R� eD�� respectively� we ob


tain a stabilizing controller of the plant P � C � �Y �aI�J��
�
I�J�

D�R eD���X�

aI�J��
�
I�J�

N�R eD��
��


�
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It is easy to show that the following equation over A holds��
N dE

��I�J�
eX� ���I�J�

eY�
� �

Y aI�J��
�
I�J�

det� eD��D�

X �aI�J��
�
I�J�

det� eD��N�

�
�

�
dE O

Z aI�J��
��
I�J�

det� eD��E

�
�

��
���

where Z is a matrix over A
 The right hand side of ��
��� as well as the
second matrix on the left hand side of ��
��� are nonsingular
 By Laplace�s
expansion of the second matrix on the left hand side of ��
���� matrix�
X �aI�J��

�
I�J�

det� eD��N�

�
has at least one nonzero full
size minor
 Let

us select a nonzero full
size minor of matrix
�
X �aI�J��

�
I�J�

det� eD��N�

�
�

denoted by l� having as few columns from matrix �aI�J��
�
I�J�

det� eD��N�

as possible
 Since � is a su�ciently large integer� matrix

�aI�J��
�
I�J�

det� eD��N�

is over A� so that the full
size minor l is in A
 Suppose that the full

size minor l is obtained by excluding columns ��� � � � � �k of matrix X and
including columns 	�� � � � � 	k of matrix �aI�J��

�
I�J�

det� eD��N�
 Now de�ne
a matrix R� �� �r���� of size m� n over AI�J� by

r���� � � � � � r�k�k � �� r�� � � for all other �� 	 ��
	��

and a matrix R by R� adj eD� over AI�J� 
 Following a similar discussion as
in Lemma�
�
	� of ���� we now have

det�X � aI�J��
�
I�J�

N�R eD�� � 
l� ��
	��

which is nonzero
 Therefore ��
��� is nonsingular over A
 �

In the rest of this paper� we will assume that the symbol I
 denotes the
set of all pairs �I� J� such that �IJ in ��
��� is nonzero as in the proof of
Theorem�
� and symbols �IJ �s with �I� J� � I
 denote nonzero elements
in the generalized elementary factors �IJ �s such that

P
�I�J��I� �IJ � �


Note ��� Theorem�
� can be considered as a generalization of
Theorem 	
�
� in ��� concerning SISO systems
 It is interesting to show
how we can connect Theorem�
� above to Theorem	
�
� of ���


Suppose that a plant p � nd�� with n� d � A
 Then� we have �T� �
�W� � ��n� � d�� �T� � �W� � ��d� � n�
 By Theorem�
�� letting a �
��n� � d� and b � ��d� � n�� we obtain that the plant p is stabilizable if and
only if a� b � A holds
 This is equivalent to Theorem 	
�
� of ���


��
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Strong stabilization A criterion for the strong stabilizability over a
principal ideal domain was given as Corollary	
	
� of ���
 In the following
we show that even if the existence of neither right
 nor left
coprime factor

ization of plant is assumed� the result over A is the same as Corollary	
	
�
of ���
 Furthermore� when a plant does not have a DCF� the plant cannot
be strongly stabilized
 This will be shown after the following proposition


Proposition ��� �i� The following statements are equivalent�

�a� A plant P is A�strongly stabilizable�

�b� There exist matrices N � An�m
 D � Am�m
 and C � Am�n with
P � ND�� such that

D � CN � E� ��
		�

�c� There exist matrices eN � An�m
 eD � An�n
 and C � Am�n with

P � eD�� eN such that eD � eNC � E� ��
	��

�ii� When either �b� or �c� of �i� holds
 the transfer matrix C
 given above

becomes a strongly stabilizing controller of the plant P�
�iii� Conversely
 for any strongly stabilizing controller C
 there exist ma�

trices N 
 D
 eN 
 and eD over A such that �
���� and �
��
� hold with

P � ND�� � eD�� eN �

Proof� We should prove �ii� and �iii� because �ii� implies ��b� or �c�
� �a�� of �i� and �iii� implies ��a� � �b� and �c�� part of �i�
 However� we
principally prove only �iii� because in the case where� for example� ��
		�
holds� it is obvious that transfer matrix C in ��
		� becomes a strongly
stabilizing controller of the plant P 

�iii� Let C be a strongly stabilizing controller
 Let �I� J� be a pair in
I

 Recall that symbols �IJ �s with �I� J� � I
 denote nonzero ele

ments in the generalized elementary factors �IJ �s of the plant P such thatP

�I�J��I� �IJ � �


In the following� we will construct matrices N and D satisfying ��
		�
with P � ND�� from A�IJ 
stabilizing controllers


Because the plant P has a DCF over A�IJ by Proposition�
	� there

exist two matrices eX and eY over A�IJ such that eXDIJ � eY NIJ � E

where matrices NIJ and DIJ over A�IJ satisfy P � NIJD
��
IJ 
 In addition�

obviously EE�CO � E holds� where O denotes the zero matrix of size n�
m
 From the above and by virtue of Lemma�
� of ���� matrix DIJ �CNIJ

is unimodular over A�IJ � say UIJ 
 Let � be a su�ciently large integer


Then matrices ��IJDIJU
��
IJ and �

�
IJNIJU

��
IJ are over A
 Let aIJ be an

��
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element in A for �I� J� � I
 such that
P

�I�J��I� aIJ�
�
IJ � �� as in the

proof of Theorem�
�
 Then we haveX
�I�J��I�

aIJ�
�
IJDIJU

��
IJ �

X
�I�J��I�

aIJ�
�
IJCNIJU

��
IJ � E� ��
	��

Here� let

N �
X

�I�J��I�

aIJ�
�
IJNIJU

��
IJ and D �

X
�I�J��I�

aIJ�
�
IJDIJU

��
IJ � ��
	��

where N � An�m and D � Am�m
 Recall that NIJ � PDIJ holds over
F for each �I� J� � I

 Hence we have N �

P
�I�J��I� aIJ�

�
IJNIJU

��
IJ

�
P

�I�J��I� aIJ�
�
IJPDIJU

��
IJ � PD over F � which shows P � ND��


Therefore ��
		� holds

We can analogously obtain ��
	��
 �

Proposition ��	 When a plant can be strongly stabilized
 then it has a
DCF�

Proof� Let us suppose that a plant P is strongly stabilized by a controller�
denoted by C
 Then from Proposition�
�� we have D � CN � E andeD� eNC � E� where matricesN � D� eN � and eD satisfy P � ND�� � eD�� eN 

By a simple calculation� we have�

E CeN � eD
��

D C

N �E

�
�

�
E O

O E

�
� ��
	��

which is a DCF of the plant P 
 �

� Robustness of Stabilizability

In this section� we generalize the result given in Section 	
� of ��� from the
scalar case to the matrix one


Here� plants and controllers are not restricted as in ���
 On the other
hand� the topology we will use has several conditions which are mainly
matrix versions of the conditions of ���
 Under our conditions� we will show
that for a plant and its stabilizing controller� there exist neighborhoods
of the plant and the stabilizing controller such that each element in the
neighborhood of the plant is stabilized by any element in the neighborhood
of the stabilizing controller �Theorem�
��


�	
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According to ���� we introduce two topologies 
x�yR and 
x�y
 Let 
x�yR

and 
x�y be topologies on Ax�y and on Ax�y�Ay�y� respectively� satisfy

ing the conditions C� C� given below
 We also denote by 
x�y the subspace
topology on Ax�y �Ay�y� of the topology 
x�y on Ax�y �Ay�y
 �Note
that� by conditions C� and C� given below� Ax�y �Ay�y� becomes open
in Ax�y � Ay�y
� The topology on the transfer matrices is de�ned later
by using 
x�y


C� The topological space �Ax�x� 
x�xR � is a topological ring


C� Each element of A��� is closed in 
���R 


C	 Let A�� A� � Ax�y and B�� B� � Ay�y�
 Further let A�B
��
� �

A�B
��
� 
 Suppose that N �A�� B�� is a 


x�y
neighborhood of �A�� B��
of Ax�y�Ay�y�
 Then there exists a 
x�y
neighborhood N �A�� B��
of �A�� B�� of Ax�y�Ay�y� such that for all �A��� B

�
�� in N �A�� B���

there exists �A��� B
�
�� in N �A�� B�� with A��B

���
� � A��B

���
� 


C� The product topology 

x�y
R � 


y�y
R on Ax�y � Ay�y is weaker than

topology 
x�y �i
e
 
x�yR � 

y�y
R 	 
x�y�


C� The set of all units in A��� is open in 
���R 


C� The mapping from square matrices of size x to their determinants�
�Ax�x� 
x�xR �� �A� 
���R � is continuous


C� �i� Suppose that a matrix A � Ax�y is partitioned as

A �
�
A� A�

�
� ��
��

where matrices A� and A� have the same number of rows
 Let y� and
y� be the numbers of columns of matrices A� and A�� respectively

Then for any 


x�y
R 
neighborhood N �A� of the matrix A� there exist

some 
x�yiR 
neighborhood N �Ai� of the matrix Ai �i � � or 	� such
that

N �A� �
�
N �A�� N �A��

�
� i
e
� ��
	�

N �A� � f
�
A�� A��

�
jA�� � N �A��� A

�
� � N �A��g�

�ii� Similarly� suppose that a matrix A � Ax�y is partitioned as

A �

�
A�

A�

�
� ��
��

where matrices A� and A� have the same number of columns
 Let x�
and x� be the numbers of rows of matrices A� and A�� respectively

Then for any 


x�y
R 
neighborhood N �A� of the matrix A� there exist

��
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some 
xi�yR 
neighborhood N �Ai� of the matrix Ai �i � � or 	� such
that

N �A� �

�
N �A��
N �A��

�
� i
e
� ��
��

N �A� � f

�
A��
A��

�
jA�� � N �A��� A

�
� � N �A��g�

From topology 
x�y� we introduce a topology 
x�yq on the set of transfer
matrices of size x � y� topology 
x�yq on Fx�y is induced as the quotient

topology by the subspace topology Ax�y �Ay�y� of Ax�y �Ay�y� i
e
� if
mapping

� � Ax�y �Ay�y� � Fx�y ��
��

is the natural projection� then A 	 Fx�y is open in 
x�yq if and only if
����A� belongs to 
x�y 


For condition C	� we have an analogous result for Proposition	
�
��
of ��� as follows


Proposition 	�� The mapping � in ����� is open if and only if condition
C� holds�

Proof� This proof can be obtained analogously to the proof of Proposi

tion 	
�
�� of ���
 �

We give the following theorem in terms of the topology 
x�yq on the
transfer matrices under conditions C� C�


Theorem 	�� Assume that conditions C��C� hold� Let P be a plant and
C a stabilizing controller of P � There exists a neighborhood N �P�C� of
�P�C� in product topology 
n�mq � 
m�nq such that for any �P �� C �� in
N �P�C�
 P � is stabilized by C ��

Proof� In order to prove this theorem� it is su�cient to show that for any
P � in 
n�mq 
neighborhood N �P � and any C � in 
m�nq 
neighborhood N �C��
P � is stabilized by C �


Suppose that � is an arbitrary but �xed positive integer
 Let �I� J� be
a pair in I

 Recall once again that symbols �IJ �s with �I� J� � I
 denote
nonzero elements in the generalized elementary factors �IJ �s such thatP

�I�J��I� �IJ � �
 As in the proof of Theorem�
�� for any positive integer

�� there exist some aIJ �s in A for �I� J� � I
 such that
P

�I�J��I� aIJ�
�
IJ �

�
 By conditions C� and C�� there exists a 
���R 
neighborhood N ���IJ � of
��IJ such that for any ��IJ � N ���IJ ��

P
�I�J��I� aIJ�

�
IJ is a unit
 We

assume by condition C�� without loss of generality� that � �� N ���IJ �


��
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Since the plant P has a DCF over A�IJ by Proposition�
	� there exist

matrices N � D� eN � eD� Y � X � eY � and eX over A with P � ND�� � eD�� eN
and C � Y X�� � eX�� eY such that� eX eY

� eN eD
	 �

D �Y
N X

�
� UIJ � ��
��

where all entries of matrix UIJ are inA� and matrix UIJ isA�IJ 
unimodular
�note that UIJ may not be A
unimodular�
 Hence we assume without loss
of generality that det�UIJ � is given as a power of �IJ 
 We assign the
exponent to � �that is� det�UIJ� � ��IJ �


By condition C�� given a 
���R 
neighborhood N ���IJ � of �
�
IJ � there ex


ists a 

�m
n���m
n�
R 
neighborhood N �UIJ� of the matrix UIJ such that

each U �
IJ � N �UIJ� is A��

IJ

unimodular where ��IJ is some element of

N ���IJ �
 Then by conditions C� and C�� we have 

x�y
R 
neighborhoods

NIJ�N�� NIJ�D�� NIJ�� eN�� NIJ� eD�� NIJ��Y �� NIJ �X�� NIJ�eY �� and

NIJ� eX� of N � D� � eN � eD� �Y � X � eY � and eX � respectively� such that�
NIJ� eX� NIJ�eY �

NIJ�� eN� NIJ� eD�

	 �
NIJ �D� NIJ ��Y �
NIJ�N� NIJ �X�

�
	 N �UIJ�� ��
��

where x� y denotes the size of each matrix
 We exclude singular elements
from each of neighborhoods NIJ�D�� NIJ � eD�� NIJ�X�� and NIJ� eX� as
follows
 By condition C�� the set of all nonzero elements of A is open
in 
���R 
 Hence by condition C�� the set of all nonsingular matrices of
Ax�x� denoted by Ox�x

R � is open in 
x�xR 
 We regard the neighborhoods

NIJ�D��Om�m
R � NIJ� eD��On�n

R � NIJ�X��On�n
R � and NIJ � eX��Om�m

R

as NIJ�D�� NIJ� eD�� NIJ �X�� and NIJ� eX�� respectively� which are not

empty because each of them contains one of the matrices D� eD� X � and eX

Moreover� they consist of only nonsingular matrices


In the following� we will construct a 
n�mq 
neighborhood of the plant P
from neighborhoods NIJ �N� and NIJ �D�
 Let NIJ�N�D� denote the set

f�N �� D�� � An�m �Am�m jN � � NIJ �N�� D� � NIJ�D�g� ��
��

which is a 
n�mR � 
m�mR 
neighborhood
 Further� let NIJ�P � be
��NIJ �N�D��� which is a 
n�mq 
neighborhood of the plant P by Propo

sition �
� �we use condition C	 here�
 We analogously obtain a 
m�nq 

neighborhood of the stabilizing controller C� denoted by NIJ�C�� from
neighborhoods NIJ �Y � and NIJ�X�


Let N �P � be the intersection of all such NIJ�P ��s� i
e
� N �P � �T
�I�J��I� NIJ�P �
 Similarly� let N �C� be the intersection of all NIJ�C��s�

��
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i
e
� N �C� �
T

�I�J��I�NIJ �C�
 Both N �P � and N �C� are 
n�mq 
�
m�nq 


neighborhoods
 In the following� we will show that for any �P �� C �� �
N �P ��N �C�� P � is stabilized by C �


For any pair �I� J� � I
� for any P � � N �P �� and for any C � � N �C��
there exists an element ��IJ in the 
���R 
neighborhood N ���IJ � such that
P � is A��

IJ

stabilized by C � because of the inclusion relation in ��
��
 It

follows that there exist matrices XIJ � A
n�n
��
IJ

� YIJ � A
m�n
��
IJ

� AIJ � A
n�m
��
IJ

�

and BIJ � A
m�m
��
IJ

such that

XIJN
� � AIJd

�� YIJN
� � BIJd

�� N �YIJ � �E �XIJ�d
�

P � � N �d���� C � � YIJX
��
IJ

��
��

by Proposition	
��
 Since
P

�I�J��I� aIJ�
�
IJ is a unit of A� for any positive

integer �� we have
P

�I�J��I� bIJ�
��
IJ � � with some bIJ � A
 Let � be a

su�ciently large integer
 Then� by multiplying both left and right hand
sides of �rst three expressions in ��
�� by �

��
IJ � their entries are all in A


We now haveX
�I�J��I�

�bIJ�
��
IJXIJ�N

� �
X

�I�J��I�

�bIJ�
��
IJAIJ�d

�� ��
���

X
�I�J��I�

�bIJ�
��
IJYIJ �N

� �
X

�I�J��I�

�bIJ�
��
IJBIJ�d

�� ��
���

N �
X

�I�J��I�

�bIJ�
��
IJYIJ� �

X
�I�J��I�

�bIJ�
��
IJ �E �XIJ��d

�

� �E �
X

�I�J��I�

�bIJ�
��
IJXIJ��d

�� ��
�	�

as the summation of ��
�� for all �I� J� � I

 By applying these expressions
to Proposition	
��� we �nd that P � is stabilized by C � over A for any P �

and C � in neighborhoods N �P � and N �C�� respectively
 �

Let us consider the similarities and di�erences between the conditions
used in this paper and those given by Shankar and Sule ��� when x � y � �

First� in ���� the topological space �A� 
R� is introduced as a topological ring�
so that we consider that condition C� was assumed implicitly in ���
 Condi

tions C� and C� are same as those in ���
 If x � y � �� then conditions C	
and C� are obviously equivalent to those in ���
 Although the condition C�
does not exist in ���� it holds naturally when x � y � �
 Condition C� is
e�ective only if x � � or y � � holds


We now show that the robustness of the stabilizability shown above
can be applied to the n
D systems
 Suppose that the set of stable causal
transfer functions is given as A � S��C �z� � � � � �zn�� where S is the set

��
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of polynomials whose roots are not in the closed unit polydisc U
n
�


z �

Cn
�� z � �z�� � � � �zn�� jzij � ��i � �� � � � �n

�

 Let the matrix norm

of Ax�y� denoted by jj � jj� be de�ned as

jjAjj � supz�Un 
�A�z��� A � Ax�y�

z � �z�� � � � � zn��
��
���

where 
�A�z�� is the maximal singular value of real matrix A�z�
 Then
if size x is equal to y� �Ax�x� jj � jj� becomes a normed algebra
 Let 
x�yR

be the induced topology of the matrix norm jj � jj
 Then �Ax�y� 

x�y
R � is

Hausdor� space

Suppose that X � Ax�y and Y � Ay�y
 Suppose further that X �

X �H � Y � Y �H � and H � Ay�y hold where matrices X � and Y � have no
common right factors except for unimodular matrices
 Let N �H�� N �X ���
and N �Y �� be 


y�y
R 
� 
x�yR 
� and 


y�y
R 
neighborhoods of H � X �� and Y ��

respectively
 De�ne a neighborhood N �X�Y � of �X�Y � of Ax�y � Ax�y

using such X �� Y �� and H as

N �X�Y � � f�X ��H ��� Y ��H ��� jH �� � N �H�� X �� � N �X ��� Y �� � N �Y ��g�
��
���

Varying matrices X � � Ax�y and Y � � Ay�y satisfying second sentence of
this paragraph and further varying matrices X � Ax�y and Y � Ay�y� we
have the basic neighborhood of topology 
x�y


In the following� we show that the topologies 
x�yR and 
x�y de�ned
above satisfy conditions C� C�

�i� Since �Ax�x� jj � jj� is a normed algebra� �Ax�x� 
x�xR � becomes a topo

logical ring
 Hence� condition C� holds

�ii� Conditions C� and C� are exactly same as those in ���
�iii� Condition C	 holds Showing that condition C	 holds can be done
analogously with that of ���

�iv� Suppose that A � A�A� � Ax�y with A� � Ax�y� A� � Ay�y

Then observe that for the norm de�ned in ��
���� the inequality jjAjj �
jjA�jj jjA�jj holds even if x �� y
 So� for any 


x�y
R 
neighborhood N �A� of

matrix A� there exist 
x�yR 
neighborhood N �A�� of matrix A� and 

y�y
R 


neighborhood N �A�� of matrix A� such that

N �A� � N �A��N �A��� ��
���

which shows that condition C� holds

�v� Suppose that the determinant of a square matrix of size x is a mapping
from Ax�x to A���� where the metric spaces of Ax�x and A��� are given
by jj � jj of ��
���
 Then the determinant is a continuous mapping from
�Ax�x� jj � jj� to �A���� jj � jj�� which proves that condition C� holds

�vi� Suppose that A � �A� A� �� where A � Ax��y�
y��� A� � Ax�y� � and

A� � Ax�y� 
 Then observe that norm jjA�jj
�
jjA�jj

�
of matrix A�

�
A�

�
��
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is equal to jj �A� O � jj
�
jj �O A� � jj

�
of matrix �A� O �

�
�O A� �

�



Recall that jjAjj � jj �A� O � jj� jj �O A� � jj
 So� we have jjAjj � jjA�jj�
jjA�jj
 It follows that

N �A� � �N �A�� N �A�� � � ��
���

which means that part �i� of condition C� holds
 We analogously obtain
that part �ii� of the condition holds


� Comments

In this paper we have considered MIMO systems over integral domains

The results of the stabilizability and the robustness of stabilizability hold
for MIMO systems over integral domains


Recently� we have shown that for the criterion for Theorem �
�� it is
su�cient to consider the generalized elementary factors with respect to one
matrix���
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