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1 Introduction

In this paper, we discuss the stabilizability and its robustness for multi-
input multi-output (MIMO) systems over integral domains. A criterion
for the stabilizability of single-input single-output (SISO) systems modeled
over integral domains was derived by Shankar and Sule [1] using ideal the-
ory. Their approach to the stabilizability theory is called the “coordinate-
free approach.” Sule [2] derived a criterion for the stabilizability of MIMO
systems modeled over commutative rings as well as over unique factoriza-
tion domains, by introducing the notion of the “elementary factor.” The
robustness of stabilizability was analyzed by Shankar and Sule [1] in the
case of SISO systems and by Vidyasagar et al. [3] in the case of MIMO
systems.

In this paper, we enlarge the notion of “elementary factor” by introduc-
ing the notion of “generalized elementary factor,” so that a criterion for
the stabilizability is given as a generalization of Theorem4 in [2]. We also
show that if a plant is strongly stabilizable, its doubly coprime factorization
(DCF) exists. These will be described in Section 3.

In the analysis of the robustness of the stabilizability for MIMO systems,
we do not assume that a plant and its stabilizing controller have their
right-/left-coprime factorizations as in [3]. Instead we make use of the
conditions modified mainlyfrom [1] to be applicable to MIMO systems. It
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will be shown that there exist neighborhoods of a plant and its stabilizing
controller modeled over an integral domain such that each element in the
neighborhood of the plant is stabilized by any element in the neighborhood
of the stabilizing controller. This result is applicable to MIMO n-D systems.
These will be described in Section 4.

2 Preliminary

We consider the set of stable causal transfer functions as an integral domain
(i-e. not including zero divisors), which is sufficiently large, in contrast with
the set of stable causal transfer functions considered in [2] which can include
zero divisors.

Let A denote an integral domain with an identity element. This domain
represents the set of stable causal transfer functions. For arbitrary but fixed
nonzero f in A, Ay denotes the ring of fractions of A with respect to the
set {f*|x is any nonnegative integer}. Let F be the field of fractions of
A, which consists of all possible transfer functions. The set of matrices
of size x x y over A, denoted by A**Y, coincides with the set of stable
causal transfer matrices. We denote by A%**" the set of nonsingular square
matrices of size x over A. The set of matrices of size x x y over F, denoted
by F**¥ coincides with all possible transfer matrices of size  x y. Let P
€ F*™ denote the transfer matrix of a plant, which has m inputs and n
outputs, to be controlled. Observe that a plant P can always be represented
in the form of a fraction P = Nd~!, where N is a matrix over A and d is
a nonzero element of A.

We will use small letters x and v to denote arbitrary positive integers,
and capital letters E and O to denote the identity matrix and the zero
matrix, respectively, throughout the paper.

To define the terminology about stability of transfer matrices, we in-
troduce a feedback system composed of a plant and a controller. Let Fjq
be

Fog = {(X,Y) € F™ x F"<"| det(E + XY) # 0}, (2.1)

and for (P,C) € Fioq, let H(P,C) be

(E+PC)Y —-PE+CP)!

HPEO) =1 cg+Pe)yt  (E+CP)

(2.2)

The matrix H(P,C') represents the transfer matrix of the feedback system
(P,C) from [uT ul']" to [eT el]" as shown in Fig.1.
In the following definitions, R denotes either A or A;.

Definition 2.1 R-stabilizing controller. If the pair (P,C) € Foq and
H(P,C) € Rmtn)x(m+n) then O is called an R-stabilizing controller of
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Figure 1: Feedback system

the plant P or the plant P is R-stabilized by C. If a plant P has an
R-stabilizing controller, the plant P is said to be R-stabilizable. ]

Definition 2.2 R-strongly stabilizing controller. If (P,C) € Foa,
H(P,C) € Rimtm)x(m+n) and C € R™™, then C is called an R-strongly
stabilizing controller of the plant P or the plant P is R-strongly stabilized
by C. [ |

Definition 2.3 Doubly coprime factorization over R. If there exist
matrices N, N € R™*™, D € R"*", D € R™*™, X € R™*", X € R™*™,
Y € R™*™ Y € R™*" such that matrices D, D, X, X are all nonsingular
and the following equations hold:

P=ND"'=D"'N, (2.3)
X Y][p v ] _[E O
{ﬁ —f)} {N —X} = {0 E] (2:4)
then (2.4) is called a doubly coprime factorization (DCF) over R of the
plant P and the plant is said to have a doubly coprime factorization (DCF)

over R. Tt is well known that Y X! (= X ~'Y) becomes an R-stabilizing
controller of the plant P, where X, X, Y, and Y are taken from above. m

In particular, when R is considered as 4, one may omit the phrase “.A4-”
or “over A” in the above definitions.

Here we present Sule’s criterion for the stabilizability of plants. (Note
that only in the following proposition the symbol A denotes a commutative
ring. Elsewhere it will denote an integral domain.)

Proposition 2.1 (Proposition 1 of [2])  Assume that the set of stable
causal transfer functions is a commutative ring A. Let P be a strictly

causal plant where the notion of strictly causal is defined as in [2] 1. Then,
the plant P = Nd—* (N € A™*™, d € A) is stabilizable if and only if there

'n [2], the definition of “strictly causal” is misprinted. According to the author, the
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ewists a solution X € A", Y € A™X" A € AWM and B € A™*™ for
the matriz equations

XN =Ad, YN=Bd, NY =(E—X)d. (2.5)

Moreover, if the plant P is stabilizable, then any stabilizing controller has
the form C =YX 1, where X andY satisfy (2.5). Conversely, if (2.5) has
a solution X, Y, then C =Y X! is causal and is a stabilizing controller.

|

Note 2.1 The original criterion over a commutative ring in [2] requires the
plant P to be strictly causal as above. However, since in our setting the
set of stable causal transfer functions is an integral domain A rather than
a general commutative ring, the strict causality in Proposition2.1 can be
relaxed according to Section 4.4 of [2]. As a result, the above proposition
can be rewritten as follows:

Proposition 2.1’ Assume that the set of stable causal transfer
functions is an integral domain .4. Then a plant P is stabilizable
if and only if there exists a solution X, Y, A, and B of matrix
equations (2.5) with det(X) # 0. Moreover, if a plant P is
stabilizable, any stabilizing controller has the form C = Y X!,
where matrices X and Y satisfy (2.5) and det(X) # 0. |

3 Stabilizability

In this section, we first present a criterion for the stabilizability over integral
domains by introducing a notion of “generalized elementary factor.” Then,
all strongly stabilizing controllers of a given plant are characterized. We
will show that if a plant is strongly stabilized by a stabilizing controller,
the plant has a doubly coprime factorization (DCF).

Let us introduce some notations and symbols which will be used in
the following. Let T' and W be matrices such that T = [NT dE]" and
W =[N dE], where P=Nd'eF"™ NeA"™ andd € A. Let T
be the A-module generated by rows of matrix 7" and W be the A-module

generated by columns of matrix W. Further, let 7y (Wf) be the Aj-

module generated by rows (columns) of matrix T’ (W) For a matrix X

over R, let I,r(X) be the ideal in R generated by the m x m minors of

correct definition should be as follows (all symbols in the definition are as in [2]):

DEFINITION 1. A matrix M in F is called causal if M has all entries in
R™1A. A causal matrix M is called strictly causal if I;(M) C J, where
t=1,...,min(n,m).
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X, where R is either A or Ay. We refer the readers to [4, 5] for the theory
of modules.
We now introduce the notion of generalized elementary factor.

Definition 3.1 Generalized Elementary Factor. Let 7 be the sets of
all m-tuples of integers (i1,...,4,,) such that 1 <i; < --- < i, <m+n.
Further let J be all n-tuples of integers (j1,...,Jn) such that 1 <j; <--- <
Jjn < m +mn. Suppose that I = (i1,...,ip) and J = (j1,...,j,) are any
elements of Z and 7. Let Ay € A™X(m+1) denote the matrix such that its
(k,ir)-entry is 1 for 1 < k < m and zero otherwise, Ay € A?*(m+1) the
matrix such that its (k, ji)-entry is 1 for 1 < k& < n and zero otherwise. In

addition, let Z* (j*) be the subset of 7 (j) consisting of I € 7 such that
det(ArrT) # 0 (J € J such that det(Awy;W7) # 0). We note here that
matrix AT ((AWJWT)T) is composed of rows iy, ..., %, of the matrix

T (columns Jiy---5Jn of the matrix W) For each I € 7* and J € J*,
two ideals Arr and Aw s of A are defined as

Arr = A€ AXT(ApT) ™t e A™F>™mY - and (3.1)
Aws = {AeAMWT(Ay,WT)™h e Almtnixny (3.2)

respectively. Furthermore, ideal A;; is defined as

Arg=ArrNAwy. (33)

We denote by Ly (ﬁw) the set of Apy’s for I € 7* (AWJ’S for J € .7*)

and by £ the set of Ayy’sfor I € 7* and J € J*, i.e., L7 = {Arr|I € T*},
Lw ={Aws|I € J*}, and £ = {Aps|I € I*,J € J*}. We call every
element of £ a generalized elementary factor of the plant P and every

element of Lo (EW) a generalized elementary factor of the plant P with
respect to T’ (W) [ ]

Note 3.1 The elementary factor and the generalized elementary factor are
dimensionally different, one being an element of 4 and the other an ideal
of A; the name “generalized elementary factor” is used in the sense of a
generalization of the “elementary factor.” When the set of stable causal
transfer functions, A, is a unique factorization domain, the generalized

elementary factor Apy (AWJ) with respect to T' (W) becomes a principal

ideal and as a result its generator is the elementary factor of T’ (W) as
defined in [2]. ]
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The following proposition is a generalized version of Proposition 6 of [2].
The set of stable causal transfer functions, A, is not restricted to a unique
factorization domain and can be any integral domain.

Proposition 3.1 Let [ € T* (J € j*). (i) For each nonzero element
Al ()\J) of generalized elementary factor Ap; (AWJ ) with respect to T
(W) of the plant P, the Ay, -module Ty, (AA, -module WAJ) is free of rank
m (n) (ii) For each nonzero element A\;; of the generalized elementary

factor Ary of P, the Ay,,-module T,,, (WA”) is free of rank m (n)

Proof: (i) Fix a nonzero A\; € Ayy. Let Ap; denote the same matrix as in
Definition 3.1. Let K = A\;T(Ap;T)t. Then, matrix T is factorized over
Ay, as

T =\ 'K)(ArT), (3.4)

where all entries of matrix )\I_lK belong to Ay,. Since )\I_lATIK is the
identity matrix of AY'*™ ?, the module generated by rows of matrix MK
is a free A),-module of rank m. Every entry of matrix Ar;T is in Ay, as
well as in A. Further det(Ap;T') # 0 because I € Z*. It follows that the
Ajy,-module 7, is free of rank m.

Applying the same procedure as above to matrix W7, we have an anal-
ogous result for the generalized elementary factor Ay with respect to
w.

(ii) This is obvious from the construction of the generalized elementary
factors of the plant P from Ap;’s and Ay 's. ]

The following proposition gives the A -stabilizability of any plant, where
A is a nonzero element of a generalized elementary factor of a plant. The fol-
lowing result is independent of the stabilizability (or the A-stabilizability)
of the given plant.

Proposition 3.2 Let P be any plant. Fiz a generalized elementary factor
A1y of the plant P and any nonzero element A of Ary. Then the plant P
has a DCF over A\ and is Aj-stabilizable.

Proof: Let A be an arbitrary but fixed nonzero element of a generalized
elementary factor Aj; of the plant P. We recall that the plant P has a
DCF over A if and only if both the .A-modules 7 and W are free of ranks m
and n, respectively (Lemma 3 of [2]). This also holds replacing A by Ay, 7
by 7y, and W by W, because A) itself is a commutative ring and the field
of fractions of A, coincides with F. By Proposition 3.1, the A)-modules

2)\;1AT[K = )\;1 VA )\[T(AT[T)71 = AT[T(AT[T)71 =1.
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Ty and W) are free of ranks m and n, respectively. Therefore the plant P
has a DCF over Ay. Then the Ay-stabilizability of the plant is trivial. O

From Propositions 2.1’ and 3.2, for each nonzero A of each generalized el-
ementary factor A;; of the plant P, there exist matrices X, Y, A, and B
satisfying (2.5) in Proposition2.1 over Ay by regarding A, as A. Using
this fact, we present a criterion for the stabilizability in terms of generalized
elementary factors as follows.

Theorem 3.1 A plant P is stabilizable if and only if the set of generalized
elementary factors of the plant P, L, satisfies:

> A=A (3.5)

ArsEL

Proof: (Only If) Suppose that the plant P is stabilizable. Further, sup-
pose that C' is a stabilizing controller of P.
In the following, it is shown that the following relation holds:

> A=A (3.6)
Ari€Llr

Let P = Nd~=! and C = N.d;', where N and N, are matrices over A,
and d and d, are scalars of A. Then by Lemma?2 of [2] the direct sum of
the modules generated by rows of [NT dE]" and rows of [N d.E]"
is free, so that the A-module 7 is finitely generated projective. According
to Theorem 1 on p.109 of [6], there exists a finite subset F' of A such that
it generates A and the Ag-module 7; is free for any f € F. We assume,
without loss of generality, that the set F' does not contain zero. By this

assumption, the Ay-module 7 is free of rank m for all f in F'.
In order to prove the relation (3.6), it suffices to show that the relation

SUHC D A (3.7)

fer Arr€Llr

holds for a sufficiently large integer £ since ZfeF(ff) = A. To complete
the proof, we will construct an ideal of 4 depending on f of F' such that for
each f in F'| it is smaller than or equal to EAneﬁT Arr and larger than
or equal to (f¢). Let f € F be fixed. There are m Aj-linearly independent
elements in the Ag-module 7;. Let V; be a square matrix of size m whose
rows are Ajy-linearly independent elements of 7. We assume without loss
of generality that the matrix V; is over A (otherwise if V} is a matrix
over Ay, V; multiplied by f*, with a sufficiently large integer z, will be
a matrix over A, so that we can regard such a matrix as “V;.”). There

7
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exist a nonnegative integer » and a matrix K; € A(™+%)*™m gych that the
following equation holds:
T= fﬁVKfo. (3.8)

Then ideal I, 4(K ) becomes the ideal we want to construct, as follows.
First, we will show that

Lna(Kp)C Y Agr. (3.9)
Arr€Llr

Using the matrix Ap; in Definition 3.1, we denote matrices Ap;T and
ATIKf by T7 and Ky, respectlvely Then the matrix equation TTf1 =
KK} holds. Tt follows that T, ' det(Kyr) € Almtn)xm “so that
det(Kyr) € Agr from (3.1). Slnce Ima(Ky) is an A-linear combination
of such det(Kyr)’s, inclusion relation (3.9) holds. Next, we show that
Ima,(f"Ky) = Ay since it implies that

(%) C Lna(Ky) (3.10)

for a sufficiently large integer £. As a relationship between matrices T
and Vy, there is an Ag-unimodular U such that T = U[Vf o]".
follows that U = [ f~ ”KT Z]" holds for some matrix Z. Hence by using
Laplace’s expansion, we have that I,4,(f~"Ky) = Ay, so that (3.10)
holds. It follows from (3.9) and (3.10), that the inclusion relation (3.7)
holds, and as a result (3.6) also holds.

Similarly we have », . Aw,; = A and hence relation (3.5) holds
by the construction of the set of generalized elementary factors of the plant
P, L.

(If) To show that the plant P is stabilizable, we will construct a stabilizing
controller of P from A),,-stabilizing controllers of P. According to (3.5),
we select one element, denoted by Ajy, in the generalized elementary factor
Ay for each pair (I,J) € Z* x J* such that the following equation holds:

> =L (3.11)
(I,LJ)ET*x T*

In the rest of this proof, we fix A;y for each pair (I,J) in 7% x J* as in
(3.11). Let Z* denote the set of all pairs (I, J) such that Ary in (3.11) is
nonzero. Then (3.11) can be rewritten as

> =L (3.12)

(I,J)eT+

By Proposition 3.2, the plant P has a DCF over A,,,. Let P = Nd !,
where N is a matrix over A and d is a scalar of A (note that A, not Ay, , is

8
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used here). Then P is A),,-stabilizable and as a result there exist matrices
X1y, Y75, Ary, and By over AAU satisfying

XN = Aryd, YiyN = Bryd, NYi; = (E— X15)d. (3.13)

For any positive integer v, there exists an ays in A for each (I, .J) € 77 such
that 3 ; jyez+ arsA7; = 1. Using this fact and equations in (3.13), for a
sufficiently large integer v, we have the following three matrix equations:

Z (aI'])\?JXI'])N = Z (a[J)\?JA[J)d, (314)
(1,J)ez+ (1,J)ez+
Z (GIJA;JYIJ)N = Z (G/IJ)\;]BIJ)C[, (3.15)
(I,J)ETH (1,J)eT+
N Y (asMyYi) =Y (asXy(I—-Xpp)d
(1,J)ez+ (1,J)ez+
== Y (arsA{;X1s))d, (3.16)
(I,J)ez+

where all matrices of the form }-; ;c7+(-) are over A.

Now let X = Z(I,J)EI‘*’ (GIJ)\?JXIJ) and Y = Z(LJ)GI‘*’ (G/IJA?JYIJ).
If det(X) # 0, we immediately obtain a controller C = Y X ! by Proposi-
tion 2.1’ and the proof is complete. So, in the rest of this proof, we suppose
that det(X) = 0 and reconstruct the matrix X to be nonsingular. The fol-
lowing technical results are derived in analogy with those of Lemma4.4.21
in [7].

Let (Iy, Jo) be an arbitrary but fixed pair of Z*. Since the plant P has
a DCF over Ay, , , there exists matrices Ny, Do, .7\70, .5[), Yo, Xo, 176, and

X, over Ay, such that P = NoDy' = Dy' Ny and
NoYo + DoXo = E, YoNo + XoDo = E. (3.17)

By simple calculation, it is found that for any matrix R of ATI:J’;, by
considering Iy as I and Jy as J, matrices Xy, , and Yy, , can be (X, —
NoR)Dgy and (Yy + DoR)Dy, respectively, in (3.13). In the following we

will construct a matrix R such that
X —agy1,NY, 5, NoRDy (3.18)

is nonsingular over A. Having constructed such a matrix and letting X7, s,
and Yy, s, be matrices (Xo—NoR)Dy and (Yo+DoR)Dy, respectively, we ob-
tain a stabilizing controller of the plant P, C' = (Y +az,.1, A7, 5, DoRDo ) (X —
U/IO‘]O)\?OJON[)RD(])il.
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It is easy to show that the following equation over A holds:

N dE ] {Y ary 1, Ny, 5, det(Do)Dy ]

Mo Xo =N Yol X —ag A, det(Do)N
0Jo 0/)+Vo (3.19)
dE 0]

Z a1,5,A3,, det(Do)E |’

where Z is a matrix over A. The right hand side of (3.19) as well as the
second matrix on the left hand side of (3.19) are nonsingular. By Laplace’s
expansion of the second matrix on the left hand side of (3.19), matrix
[X —QIoJo AL g, det(ﬁO)NO] has at least one nonzero full-size migor. Let
us select a nonzero full-size minor of matrix [ X —ay, , A7, g, det(Do) No B

denoted by I, having as few columns from matrix —az,s,A7, 5, det(Dy) Ny
as possible. Since v is a sufficiently large integer, matrix

—QI1yJo A;OJO det(ﬁO)NO

is over A, so that the full-size minor [ is in A. Suppose that the full-
size minor [ is obtained by excluding columns a1, ..., qy of matrix X and
including columns fi, ..., B of matrix —ar, s, A7, 7, det(Do)No. Now define
a matrix Ry (= (rgq)) of size m x n over Ayg, s, by

TBias = " = Tgya, = 1; Tga = 0 for all other o, 8 (3.20)

and a matrix R by R; adj Dy over Ar,7,- Following a similar discussion as
in Lemma4.4.21 of [7], we now have

det(X — agysoNY, . NoRDy) = £l (3.21)
which is nonzero. Therefore (3.18) is nonsingular over A. o

In the rest of this paper, we will assume that the symbol ZT denotes the
set of all pairs (I, J) such that A7y in (3.11) is nonzero as in the proof of
Theorem 3.1 and symbols \7;’s with (I,J) € ZT denote nonzero elements
in the generalized elementary factors Aj;’s such that Z(I,J)EI+ Arg = 1.

Note 3.2 Theorem3.1 can be considered as a generalization of
Theorem 2.1.1 in [1] concerning SISO systems. It is interesting to show
how we can connect Theorem 3.1 above to Theorem 2.1.1 of [1].

Suppose that a plant p = nd~! with n,d € A. Then, we have Ap; =
Awi = ((n) : d), Ar2 = Awz = ((d) : n). By Theorem 3.1, letting a =
((n) : d) and b= ((d) : n), we obtain that the plant p is stabilizable if and
only if @ + b = A holds. This is equivalent to Theorem 2.1.1 of [1]. |

10



STABILIZABILITY OVER INTEGRAL DOMAINS

Strong stabilization A criterion for the strong stabilizability over a
principal ideal domain was given as Corollary 2.2.1 of [8]. In the following
we show that even if the existence of neither right- nor left-coprime factor-
ization of plant is assumed, the result over A is the same as Corollary 2.2.1
of [8]. Furthermore, when a plant does not have a DCF, the plant cannot
be strongly stabilized. This will be shown after the following proposition.

Proposition 3.3 (i) The following statements are equivalent:
(a) A plant P is A-strongly stabilizable.

(b) There exist matrices N € A»*™, D € A™*™, and C € A™*™ with
P=ND"! such that
D+CN =E. (3.22)

(¢) There exist matrices N € A"*™, D € A™", and C € A™™ with

P =D7IN such that L
D+NC =E. (3.23)

(i) When either (b) or (c¢) of (i) holds, the transfer matriz C, given above,
becomes a strongly stabilizing controller of the plant P.
(iii) Conversely, for any strongly stabilizing controller C, there exist ma-

trices N, D, N, and D over A such that (3.22) and (3.23) hold with
P=ND"!'=D"!N.

Proof: We should prove (ii) and (iii) because (ii) implies “(b) or (c)
— (a)” of (i) and (iii) implies “(a) — (b) and (c)” part of (i). However, we
principally prove only (iii) because in the case where, for example, (3.22)
holds, it is obvious that transfer matrix C in (3.22) becomes a strongly
stabilizing controller of the plant P.

(iii) Let C be a strongly stabilizing controller. Let (I,J) be a pair in
Z%. Recall that symbols Ar;’s with (I,J) € ZT denote nonzero ele-
ments in the generalized elementary factors Ar;’s of the plant P such that
>, pyer+ Mg = 1.

In the following, we will construct matrices N and D satisfying (3.22)
with P = ND~! from A,,,-stabilizing controllers.

Because the plant P has a DCF over A),, by Proposition3.2, there
exist two matrices X and Y over Ax,, such that )?DU + ?NU = F
where matrices Ny; and Dy over Ay,, satisfy P = Nr;D; ;. In addition,
obviously EE+CO = FE holds, where O denotes the zero matrix of size n x
m. From the above and by virtue of Lemma 3.1 of [3], matrix Dr; + CNry
is unimodular over A,,,, say Urs. Let £ be a sufficiently large integer.
Then matrices )\gJDUUle and )\gJNUUle are over A. Let ary be an

11
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element in A for (I, J) € Z* such that 37, o7+ arsA5, = 1, as in the
proof of Theorem 3.1. Then we have

Z GIJA§JDIJU£]1 + Z aIJ)\gJCNIJU;Jl =F. (3.24)
(I,J)eT+ (I,J)eT+
Here, let

N= Y ayX,NyUjfandD= > apA,DyU;}, (3.25)
(I,J)ez+ (1,J)eT+

where N € A™*™ and D € A™*™, Recall that N;; = PDj;; holds over
F for each (I,J) € I*. Hence we have N = 37 ;)c7+ arg s, NiUE
= Z(I’J)eﬁ aU)éJPDUUI’Jl = PD over F, which shows P = ND~!.
Therefore (3.22) holds.

We can analogously obtain (3.23). m

Proposition 3.4 When a plant can be strongly stabilized, then it has a
DCF.

Proof: Let us suppose that a plant P is strongly stabilized by a controller,
denoted by C. Then from Proposition3.3, we have D + CN = E and
D+NC = E, where matrices N, D, N, and D satisfy P = ND~! = D7!N.
By a simple calculation, we have

L% —%} [JI\)I —CE} - [5 g] (3.26)

which is a DCF of the plant P. o

4 Robustness of Stabilizability

In this section, we generalize the result given in Section 2.3 of [1] from the
scalar case to the matrix one.

Here, plants and controllers are not restricted as in [3]. On the other
hand, the topology we will use has several conditions which are mainly
matrix versions of the conditions of [1]. Under our conditions, we will show
that for a plant and its stabilizing controller, there exist neighborhoods
of the plant and the stabilizing controller such that each element in the
neighborhood of the plant is stabilized by any element in the neighborhood
of the stabilizing controller (Theorem 4.1).

12
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According to [1], we introduce two topologies 7, and 7°*¥. Let 75"
and 7°*Y be topologies on A**¥ and on A**Y x AY*Y  respectively, satisfy-
ing the conditions CO-C6 given below. We also denote by 7**¥ the subspace
topology on A**Y x AY*¥" of the topology 7°*¥ on A**Y x A¥*¥. (Note

that,

by conditions C1 and C3 given below, A**Y x AY*¥" becomes open

in A%V x AY*¥.) The topology on the transfer matrices is defined later

by using 7

Co
C1
C2

C3

C4
C5

C6

TXY

The topological space (A***, 757%) is a topological ring.

Each element of A'*! is closed in 75*'.

Let 41,4y € A®Y and By,By € AY*Y". Further let 4,B;! =
Asz_l. Suppose that N (A1, By) is a 7**¥-neighborhood of (A1, By)
of A%*¥ x A¥*¥", Then there exists a 7°*¥-neighborhood N (A2, B2)
of (Az, By) of A**¥ x AY*¥" such that for all (A4}, B}) in N'(Az, Bs),
there exists (A}, B}) in N'(A;, By) with A} B} ' = A,By .

The product topology 75Y x 75 on A**Y x AY*¥ is weaker than
topology 7% (i.e. 7Y x 75V C 7°XY).

The set of all units in A'*! is open in T}%Xl.

The mapping from square matrices of size = to their determinants:
(Azxe 127 ") — (A, 7*") is continuous.

(i) Suppose that a matrix A € A**Y is partitioned as
A=] A |4 ], (4.1)

where matrices A; and As have the same number of rows. Let y; and
y2 be the numbers of columns of matrices A; and As, respectively.
Then for any 75 *Y-neighborhood N'(A) of the matrix A, there exist
some 75" ¥*-neighborhood N'(4;) of the matrix A; (i = 1 or 2) such
that

N(A) D {[ 44 | A5 ] AL € N(A1), 4 € N(4o)}.

(ii) Similarly, suppose that a matrix A € A**¥ is partitioned as

A= { 4 ] (43)

where matrices 4; and As have the same number of columns. Let x;
and x5 be the numbers of rows of matrices A; and As, respectively.
Then for any 75" Y-neighborhood N(A) of the matrix A, there exist

13
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some 7' “Y-neighborhood N'(4;) of the matrix A; (i = 1 or 2) such

that
N(4) 5 {%} ie., (4.4)
N 5[] 14 € A, 4 € M)

From topology 7*¥, we introduce a topology 7;*¥ on the set of transfer
matrices of size x x y; topology 77”¥ on F**¥ is induced as the quotient
topology by the subspace topology A**Y x AY*¥™ of AZXV x AV*Y i.e., if
mapping

T s ATXY x AV FEXY (4.5)

is the natural projection, then A C F**¥ is open in 77*¥ if and only if
7 1(A) belongs to 7%V,

For condition C2, we have an analogous result for Proposition2.3.13
of [1] as follows.

Proposition 4.1 The mapping 7 in (4.5) is open if and only if condition
C2 holds.

Proof: This proof can be obtained analogously to the proof of Proposi-
tion 2.3.13 of [1]. o

We give the following theorem in terms of the topology 7;7% on the
transfer matrices under conditions CO-C6.

Theorem 4.1 Assume that conditions CO-C6 hold. Let P be a plant and
C a stabilizing controller of P. There exists a neighborhood N (P,C) of
(P,C) in product topology 7,)*™ x 7"*™ such that for any (P',C") in
N(P,C), P is stabilized by C'.

Proof: In order to prove this theorem, it is sufficient to show that for any
P'in 7,/*™-neighborhood NV (P) and any C" in 7,"*"-neighborhood N (C),
P' is stabilized by C'.

Suppose that v is an arbitrary but fixed positive integer. Let (I, J) be
a pair in ZT. Recall once again that symbols A;;’s with (I,J) € ZT denote
nonzero elements in the generalized elementary factors Aj;’s such that
Z(LJ)eIJr Argj = 1. As in the proof of Theorem 3.1, for any positive integer
v, there exist some ay;’s in A for (I, J) € I such that Z(LJ)EIJr arg Ny =
1. By conditions CO and C4, there exists a 7' -neighborhood N'(\Y,) of
A7y such that for any A, € N(X];), 27 jyez+ arsAf, is a unit. We
assume by condition C1, without loss of generality, that 0 ¢ N'(AY,).

14
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Since the plant P has a DCF over A,\U by Proposition 3.2, there exist
matrices N, D N, D Y, X,Y, and X over A with P = ND~! = D-IN
and C =YX~ =X~ 1Y such that

[ Zl\), _}; ] =Ury, (4.6)

X VY
-N D

where all entries of matrix Uy arein 4, and matrix Uy is Ay, ,-unimodular
(note that Ury may not be A-unimodular). Hence we assume without loss
of generality that det(U;;) is given as a power of A;;. We assign the
exponent to v (that is, det(Ury) = AY;).

By condition C5, given a 73°'-neighborhood N'(\¥,) of A¥,, there ex-
ists a T](Qm-l_”)X(m+n)-nelghborhood N (Uyy) of the matrix Ury such that
each Uz; € N(Upy) is Ay -unimodular where A7; is some element of
N(XY;). Then by conditions C1 and C6, we have 7 Y-neighborhoods
Nis(N), Ny(D), Nis(=N), Nis(D), Nig(=Y), Nis(X), Nig(Y), and
N (X ) of N, D,—-N, D, -Y, X, Y and X respectively, such that

Nis(X) Nis(Y)
N1j(=N) Nis(D)

N1s(D) Nps(=Y)
[ij(N) ﬂfU(X) CN(Ury), (47)

where z X y denotes the size of each matrix. We exclude singular elements
from each of neighborhoods N7s(D), N7s(D), Nis(X), and N7;(X) as
follows. By condition C1, the set of all nonzero elements of 4 is open
in 7'11{(1. Hence by condition C5, the set of all nonsingular matrices of

A**% denoted by Ox”, is open in 75°%. We regard the neighborhoods
NI,]( ) n Omxm N[J( ) n Onxn NIJ( ) n Onxn and NIJ( ) n Omxm
as N1s(D), N1s(D), N1j(X), and N7;(X), respectively, which are not
empty because each of them contains one of the matrices D, D X, and X.
Moreover, they consist of only nonsingular matrices.

In the following, we will construct a 7,;/*"™-neighborhood of the plant P
from neighborhoods Ny (IV) and N7;(D). Let N7;(N, D) denote the set

{(N’,Dl) g AMXMm x Amxm |NI S NIJ(N),DI € NIJ(D)}, (4.8)
which is a 7™ x 777 ™-neighborhood.  Further, let Nj;(P) be
7(N17(N, D)), which is a 7)**"™-neighborhood of the plant P by Propo-
sition4.1 (we use condition C2 here). We analogously obtain a 7,"*"-
neighborhood of the stabilizing controller C, denoted by N7;(C), from
neighborhoods Ny, (Y') and Ny, (X).
Let AV(P) be the intersection of all such Nj;(P)’s, ie., N(P) =
Nr,7)ez+ N1s(P). Similarly, let N'(C) be the intersection of all N1,(C)’s,
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Le., N(C) = (1,5)ez+ N1s(C). Both N(P) and N(C) are 7™~ /7>
neighborhoods. In the following, we will show that for any (P',C’) €
N(P) x N(C), P' is stabilized by C".

For any pair (I,J) € ZT, for any P’ € N'(P), and for any C' € N (C),
there exists an element \;; in the 75°'-neighborhood N (AY;) such that
P'is Ay, -stabilized by C' because of the inclusion relation in (4.7). It
follows that there exist matrices Xz € A;L}XJ", Y5 € AZ?:;”, Aps € A;L;Jm,

and Bry € A}, ™ such that
IJ

XIJN,:AIJd,, Y[JN’:B[Jd’, N’YIJ:(E—XIJ)d, 4.9
P! :Nldl_l, Cl :YIJX;J1 ( - )

by Proposition 2.1’. Since Z(I J)eT+ aryA\py is a unit of A, for any positive

integer &, we have Z(I,J)€I+ bU)\'IEJ = 1 with some br; € A. Let £ be a
sufficiently large integer. Then, by multiplying both left and right hand
sides of first three expressions in (4.9) by )\'fJ, their entries are all in A.
We now have

ST uAGXI)N = ) (b AL, (4.10)
(I,J)ez+ (I,J)ez+
S bALYIONT = Y (b B)d, (4.11)
(1,J)ez+ (1,J)ez+
NS NSY) = YD (b (B - X))
(I,J)ET* (1,J)eT+
= (BE- Y (A5 X)d, (412)
(I,J)ezt

as the summation of (4.9) for all (I, J) € Zt. By applying these expressions
to Proposition 2.1’ we find that P’ is stabilized by C' over A for any P’
and C' in neighborhoods N(P) and N(C), respectively. 8]

Let us consider the similarities and differences between the conditions
used in this paper and those given by Shankar and Sule [1] when z =y = 1.
First, in [1], the topological space (A, Tg) is introduced as a topological ring,
so that we consider that condition CO was assumed implicitly in [1]. Condi-
tions C1 and C4 are same as those in [1]. If = y = 1, then conditions C2
and C3 are obviously equivalent to those in [1]. Although the condition C5
does not exist in [1], it holds naturally when = y = 1. Condition C6 is
effective only if > 1 or y > 1 holds.

We now show that the robustness of the stabilizability shown above
can be applied to the n-D systems. Suppose that the set of stable causal
transfer functions is given as A = S~ C[F ,...,F x], where S is the set
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of polynomials whose roots are not in the closed unit polydisc U = {z €
C* | F=(F¥, - Fx), |[Fa| <¥,J =W, -+ x}. Let the matrix norm
of A**¥ denoted by || - ||, be defined as

IAl] = sup, g 7(A(2)), A€ A,

z = (Zla"'azn)7 (413)

where 7(A(z)) is the maximal singular value of real matrix A(z). Then

if size x is equal to y, (A**%,|| - ||) becomes a normed algebra. Let 75 Y
be the induced topology of the matrix norm || - ||. Then (A®*Y,75"") is

Hausdorff space.

Suppose that X € A**Y and Y € AY*Y. Suppose further that X =
X'H,Y =Y'H, and H € AY*Y hold where matrices X’ and Y’ have no
common right factors except for unimodular matrices. Let N'(H), N'(X"),
and N(Y') be 757Y-, 7,°Y-, and 75*Y-neighborhoods of H, X', and Y’,
respectively. Define a neighborhood A(X,Y) of (X,Y) of A*XY x A**Y
using such X', Y’ and H as

NX,Y)={(X"H",Y"H")|H" e N(H), X" e N(X"),Y" e N(Y")}.
(4.14)

Varying matrices X' € A™*Y and Y' € AY*Y satisfying second sentence of
this paragraph and further varying matrices X € 4**Y and Y € AY*Y  we
have the basic neighborhood of topology 7%*Y.

In the following, we show that the topologies 75" and 7% defined
above satisfy conditions C0-C6.
(i) Since (A®** || -||) is a normed algebra, (A**®, 75**) becomes a topo-
logical ring. Hence, condition CO holds.
(ii) Conditions C1 and C4 are exactly same as those in [1]
(iii) Condition C2 holds Showing that condition C2 holds can be done
analogously with that of [1].
(iv) Suppose that A = A1 A; € A**Y with A; € A"V, A, € AY*Y.
Then observe that for the norm defined in (4.13), the inequality ||A|| <
||A1]]||A2|] holds even if z # y. So, for any 75~ Y-neighborhood N'(A) of
matrix A, there exist 7 Y-neighborhood N'(4;) of matrix A; and 757Y-
neighborhood N'(42) of matrix A, such that

N(A) D N (AN (Az), (4.15)

which shows that condition C3 holds.

(v) Suppose that the determinant of a square matrix of size z is a mapping
from A%*® to A'X! where the metric spaces of A*** and A'¥! are given
by || - || of (4.13). Then the determinant is a continuous mapping from
(A=< || -|]) to (AY*1,]] - ||), which proves that condition C5 holds.

(vi) Suppose that A = [A; Ay], where A € A**W1tv2) A € A**¥1 and

Ay € A®*¥2_ Then observe that norm ||A;|| (||A2||) of matrix A; (A2)
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is equal to ||[4, O]]] (||[o A2]||) of matrix [4, O] ([0 Az]).

Recall that ||A|| < ||[[A1 O]||+||[O Az2]]||- So, we have ||A|| < ||41]|+
[|Az||. It follows that

N(A) D [N(4:) N(A2)], (4.16)

which means that part (i) of condition C6 holds. We analogously obtain
that part (ii) of the condition holds.

5 Comments

In this paper we have considered MIMO systems over integral domains.
The results of the stabilizability and the robustness of stabilizability hold
for MIMO systems over integral domains.

Recently, we have shown that for the criterion for Theorem 3.1, it is
sufficient to consider the generalized elementary factors with respect to one
matrix[9].
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