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Curriculum for an Introductory Computer Science 
Course: Identifying Recommendations from  
Academia and Industry 
 By Simon G. Sultana and Philip A. Reed

ABSTRACT
The purpose of this study was to define the 
course content for a university introductory 
computer science course based on regional 
needs. Delphi methodology was used to identify 
the competencies, programming languages, and 
assessments that academic and industry experts 
felt most important. Four rounds of surveys were 
conducted to rate the items in the straw models, 
to determine the entries deemed most important, 
and to understand their relative importance 
according to each group. The groups were 
then asked to rank the items in each category 
and attempt to reach consensus as determined 
by Kendall’s coefficient of concordance. The 
academic experts reached consensus on a list 
of ranked competencies in the final round 
and showed a high degree of agreement on 
lists of ranked programming languages and 
assessments. The industry experts did not 
reach consensus and showed low agreement 
on their recommendations for competencies, 
programming languages, and assessments. 

Keywords: Curriculum Design, Delphi, 
Competencies, Assessments, Computer 
Science Education, Programming Languages, 
Introductory Course  

INTRODUCTION AND BACKGROUND
As education aims to prepare a workforce for 
future jobs, it is of little surprise that the number 
of students in introductory computer science 
(CS) courses have continued to grow in colleges 
and universities. These courses can cover 
information systems, hardware and architecture, 
operating systems, software engineering (SE), 
programming, databases, among other topics 
(Anderson, Ferro, & Hilton, 2011; Wu, Hsu, Lee, 
Wang, & Sun, 2014). Additionally, instructors 
can select from several computer languages 
(Ali & Smith, 2014; Chang, 2014; Shein, 
2015) to provide students an experience that 
is educational, motivating, and meets current 
industry practices. Likewise, there are several 
possibilities for assessment in these courses 

(Fulton & Schweitzer, 2011; Muñoz, Martínez, 
Cárdenas, & Cepeda, 2013; Shaw, 2010). The 
aim of this research was to provide suggestions 
for the competencies, programming languages, 
and assessments for an introductory CS course. 
The class, part of a new undergraduate SE 
program at a small private nonprofit university 
in Fresno County, California, will serve as a 
program gateway for students looking to major 
or minor in SE, and for others looking to develop 
some background in computing. 

Sources of CS Curriculum 
Recommendations
Expert recommendations on computing curricula 
are found in professional associations, industry, 
academic institutions, and the literature. 
The Association for Computing Machinery 
(ACM) provided the first set of curriculum 
recommendations for undergraduate study in CS 
in 1965 and has published updates about once 
every decade, in recent years as part of the Joint 
Task Force on Computing Curricula (JTFCC, 
2001; JTFCC, 2013). Though the JTFCC’s 
recommendations have provided much value to 
institutions offering CS programs over the years, 
educators at liberal arts colleges and universities 
have often felt underserved by the documents 
(Liberal Arts Computer Science Consortium 
[LACS], 2007). The LACS last released a model 
curriculum almost ten years ago and based their 
suggestions on JTFCC’s 2001 recommendations 
and included hours to focus on topics in 
introductory courses. 

The computing industry includes businesses 
engaged in activities directly related to the 
disciplines of CS, computer engineering, 
information systems, information technology,  
and SE. Most of these distinct fields of study 
arose because of the individual skill sets required 
for these varied jobs and disciplines (Chand, 
1974; Lunt, et al., 2005; Lutz, Naveda, &  
Vallino, 2014). 

Industry defines the skills necessary for 
employment and education aims to teach them. 
Norton (1998) based the DACUM (Developing 



81a Curriculum) methodology on the premise that 
experts in industry best define their jobs and 
possess certain knowledge, skills, and aptitude 
with tools. Business practices are developed  
to improve effectiveness and efficiency and there 
arises a need for new employees who possess 
some knowledge of, and perhaps the ability  
to implement, them. There has been much 
written over the past few years on the reasons for 
teaching agile software development practices  
in the classroom (Guercio & Sharif; 2012; Lutz et 
al., 2014; Rajlich, 2013). The computing industry 
has thus shown that it serves a role in  
the curriculum definition of CS and  
related disciplines. 

There are approximately 1,300 academic 
institutions in the United States offering 
undergraduate programs in CS or related 
disciplines (U.S. News & World Report, 2015). 
Hambrusch, Libeskind-Hadas, and Aaron (2015) 
pointed to almost 800 such institutions in their 
study on the backgrounds of Ph.D. students 
majoring in CS Education and industry, therefore, 
can both be regarded as sources of expertise 
that can be useful for the development of new 
computing curriculum. The findings in the 
literature, along with experts’ recommendations, 
serve as rich sources to help a curriculum 
designer choose competencies, programming 
languages, and assessments. 

Competencies
There are myriad topics in the CS discipline 
(JTFCC, 2001) so a consideration of disparate 
areas was required if experts were to be provided 
with a comprehensive list. The JTFCC (2013) 
identified potential topics and the LACS (2007) 
provided recommendations on areas of study. 
Three introductory CS course textbooks were also 
consulted: these were Connecting with Computer 
Science (2nd edition) (2011) by Anderson, Ferro, 
and Hilton, Invitation to Computer Science (7th 
edition) (2016) by Schneider and Gersting, and 
Computer Science Illuminated (6th edition) 
(2016) by Dale and Lewis.

A literature review was conducted to supplement 
the topics identified in these texts. A straw 
model was developed using the information 
on competencies gathered from these sources. 
Although identification of potential competencies 
from curriculum recommendations/textbooks and 
journal articles was done independently, 24 of 

the 26 topics in the former sources were found 
in the latter group. In all, 38 competencies were 
identified to form the straw list introduced to the 
experts in this study.

Programming Languages
Introductory CS courses include programming 
to varying degrees (Davies, Polack-Wahl, & 
Anewalt, 2011). There are reportedly up to 2,500 
programming languages (Kinnersley, n.d.), 
though not all are actively used. Regardless, there 
are numerous languages available to introduce 
students to computer programming. Of utmost 
importance is accessibility for non-majors and 
beginners (Kelleher & Pausch, 2005; Malan & 
Leitner, 2007; Norman & Adams, 2015; Stefik  
& Gellenbeck, 2011) and perceived importance 
by majors (Forte & Guzdial, 2005). 

Six sources were consulted to determine language 
use in industry; these included the TIOBE index, 
RedMonk, the PopularitY of Programming 
Language (PYPL) list, Trendy Skills, Black 
Duck Software, and IEEE Spectrum. Four 
sources were found that identified language 
popularity in academia. O’Grady (2013) reported 
on RedMonk’s (2015) use of references of 
programming languages in the curriculum  
of leading colleges and universities to rank the 
top twenty languages, as did three additional 
sources from journal articles, which included 
popularity rankings (Ben Arfa Rabai, Cohen, 
& Mili, 2015; Davies et al., 2011; Guo, 2014). 
Using the guideline to include languages 
that were identified in at least three of the six 
industry sources, or in at least two of the four 
academic sources, a list of twenty languages 
was constructed. Additionally, three visual 
programming languages were thought to warrant 
inclusion (Alice, Greenfoot, and Scratch) as they 
have become increasingly popular in introductory 
courses (Davies et al., 2011; Malan & Leitner, 
2007). In all, 23 programming languages were 
identified to form the straw list introduced to the 
experts in this study. 

Assessments
The literature contained articles in which 
educators teaching computing courses shared 
their curriculum designs and explained 
assessments. Many researchers mentioned 
assessments they utilized in the classroom as 
evidence of student learning to demonstrate 
results. The authors reviewed reported on some 
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of the assessments used in introductory CS 
courses. Eleven distinct assessment devices were 
identified for academic and industry experts 
to consider for an introduction to a CS course. 
These items, in alphabetical order, were: 

 • Case studies 

 • Code reviews

 • Concept questions

 • Essays 

 • Final exams

 • Interviews with professionals

 • Lab exercises 

 • Online threaded discussions

 • Quizzes 

 • Smaller programming activities

 • Term projects

The goal of the study was to suggest 
competencies, programming languages, and 
assessments for an introductory CS course based 
on the recommendations of regional experts in 
academia and industry. This information could 
then be used by a curriculum developer to better 
meet the needs of students and other stakeholders 
in the region in which the introductory CS  
course was offered. 

METHODS
The Delphi approach was used to collect data 
and surveys were distributed via SurveyMonkey. 
An email message with instructions and the 
appropriate link for each round was sent to the 
participants and they were asked to respond 
within one week. Follow-up emails were sent 
out during the week. This study’s design was 
heavily based on the approach of Okoli and 
Pawlowski (2004) in that a panel structure was 
utilized, which divided the two expert groups as 
they selected items in Round 2 and ranked them 
in subsequent rounds. A major deviation from 
Okoli and Pawlowski’s (2004) approach was 
to provide experts with straw models of initial 
items (Rotondi & Gustafson, 1996) for each of 
the three categories in Round 1.

Potential participants were identified using 
suggestions from professionals in higher 
education, graduates of academic programs, 
and research of organizations’ web sites in 
California’s Central Valley. All persons were 

invited to take part in the research by email. 
Phone calls were placed to those who did not 
initially respond. Snowball sampling was 
utilized to help increase exposure of the study 
to the expert population (Hays & Singh, 2012). 
Individuals who agreed to participate, therefore, 
were asked to suggest other candidates. The 
participants expressing interest were questioned 
about their backgrounds in the fields of 
computing and software development to verify 
they met the criterion of a minimum of  
five years’ experience.

One research subject matter expert was also 
recruited for this study to assist the researcher 
in reviewing participants’ open responses from 
the first round to validate their identification. 
This individual was required to have a Ph.D. 
and have experience teaching in an information 
technology related discipline.

In the first survey, each participant was asked 
to provide demographics (gender, age, current 
employment, years of experience, highest 
education earned in CS or a related field) and 
the number of programming languages in 
which the individual was fluent. The second 
set of questions asked the participants to rate 
the applicability of the competencies from 
the straw model on a five-point Likert-type 
scale (very important = 5, important = 4, 
moderately important = 3, of little importance 
= 2, unimportant = 1). The subsequent sections 
provided a list of programming languages and 
assessments. Blank entries were also available 
for optional contributions to each of  
the three categories. 

The results of the surveys were downloaded 
into Microsoft Excel. Statistics were computed 
for the age, years of experience, number of 
programming languages in which the participants 
were fluent, gender, employment, and highest 
education were computed using various built-
in functions. Responses to each of the three 
content categories were also copied into Excel 
and quantified according to the anchors as 
previously identified. Newly suggested items 
by participants were checked for individuality 
and inserted into the lists. The newly suggested 
items were reviewed with the subject matter 
expert and changes to the surveys for the next 
round were made. Any item selected by at 
least two participants was added to the list of 
competencies, programming languages,  
or assessments. 

The rated lists of items and their median weight 
scores were added to the survey for the second 



83round. The median was computed as these 
data were Likert-type in nature (Boone, H. 
N.  Jr. & Boone, D. A., 2012) and this value 
in the questionnaires would communicate the 
perceived importance attributed to each item. 
The participants were instructed to determine 
whether each of the items should be included for 
the introductory CS course by choosing to select 
at least ten topics for each of the three categories 
(Okoli & Pawlowski, 2004). The items were 
imported into SurveyMonkey as two equivalent 
questionnaires for the academic and industry groups. 

At this stage, the study took on a panel structure 
(Okoli & Pawlowski, 2004). The industry and 
academic groups were given separate links 
so analysis of their feedback could be done 
independently. This design would potentially 
allow experts to come to consensus more quickly 
and would allow recommendations from each 
group to be distinguished for final decision 
making by the curriculum designer/researcher. 

Feedback was collected from participants on 
their selected items from each of the three 
categories. Those items selected by at least half 
of each expert group were chosen to be included 
for Round 3 (Okoli & Pawlowski, 2004) for  
that group. The findings from this point would be 
independent for each group. 

The steps in Rounds 3 and 4 were identical. The 
lists of items as selected by the experts from 
the previous round were added to the survey. 
Participants were asked to rank each item in 
each of the three categories of competencies, 
programming languages, and assessments. The 
lists were imported into SurveyMonkey as two 
questionnaires in keeping with separate panels.

The coefficient of concordance, Kendall’s W, 
was used to determine the level of agreement 
among the participants’ ranked lists for each 
panel. Kendall’s W ranges from zero to  
one to indicate a scale of increasing unanimity 
between rankings (Field, 2009). Schmidt (1997) 
identified a value of at least 0.7 to indicate 
strong agreement so this threshold was used 
to determine whether any of the lists of 
competencies, programming languages, or 
assessments needed to be submitted in a fourth 
round to either of the panels. The W value would, 
therefore be computed six times for Round 3. 
Each W value would be analyzed independently 
and only those topics that failed to meet the 
minimum 0.7 threshold value were included  
in a Round 4 survey for each individual panel.

It was decided that a maximum of four rounds 
would be considered as it has been found that 
major fluctuations are typically not expected 
after a fourth round (Wilhelm, 2001) and 
participant fatigue can become a concern 
(Schmidt, 1997; Sitlington, 2015). Two ranked 
lists of suggested competencies, programming 
languages, and assessments were available as 
the industry and academia experts would likely 
have different preferences. These data would 
then be used in the curriculum development of 
the introductory class to the extent desired by the 
course designer. See Figure 1 for an overview  
of the study’s design methodology.

Participants
The target members for experts were experienced 
industry and academic professionals in 
California’s Central Valley. Since the opinion 
of experts in these positions was sought, a 
minimum of five years’ experience was required 
for potential industry participants (Guu, Lin, & 
Lee, 2014; Joyner & Smith, 2015). Educators 
who held at least a Master’s Degree in their field 
(Surakka, 2007) were approached about their 
interest in participating as academic experts.
The researcher directly invited 85 experts from 
California’s Central Valley; 48 individuals (56%) 
were from higher education; and 37 (44%) were 
from industry. A total of 23 individuals (27% of 
those directly invited) agreed to participate in 
the study. There were 11 persons (48%) in the 
industry group and 12 persons (52%) in  
the academic group.
 
RESULTS

Round 1
Eleven academic (92%) and eleven industry 
(100%) experts completed the Round 1 survey, 
including twenty males and 2 females (one from 
academia and one from industry). The second 
section of the survey asked participants to rate 
potential competencies for an introductory CS 
course. It was noteworthy that four competencies, 
those dealing with procedural programming, 
teamwork/interpersonal group skills, problem 
solving, and critical thinking, received median 
scores of 5 (very important) and the latter three 
items received minimum rating values no  
lower than 3. 

The next section of the survey asked participants 
to rate programming languages in terms of their 
importance for an introductory CS course. The 
rating scale was similar to the one used for 
course competencies with the inclusion of an 
option titled “unfamiliar,” which was weighted
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as 0 points. Only 5 of the 23 languages were 
known to all the participants, including assembly 
language, C, C++, Java, and Visual Basic. Six 
languages achieved median scores of zero, 
indicating unfamiliarity by more than half the 
group (Alice, Greenfoot, Haskell, R, Scheme, 
and Scratch). Five languages were rated as 
being “very important” according to their 
median rankings (C#, C++, Java, JavaScript, 
and Python). The experts provided six open-
ended responses to the optional questions about 

additional programming languages not listed 
but only HTML5 (Hypertext Markup Language) 
was mentioned in two responses. Though 
not typically considered a true programming 
language, HTML5 was added to the list for 
Round 2 because concepts in CS could be taught 
using this markup language.

The final section of the Round 1 survey asked 
participants to rate 11 potential assessments.  
The rating scores available were identical to 
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Figure 1. Study design methodology



85those used with the course competencies. The 
experts provided only four open-ended responses 
to the list of assessments to be considered. Team 
programming assignments were recommended 
by two individuals so this assessment was  
added for Round 2.

Round 2 
The median ratings of the competencies, 
programming languages, and assessments were 
recorded into the survey for Round 2 to 
communicate the importance attributed to each 
item by the overall group. The goal of the second 
round was to give experts the opportunity to 
narrow down the lists they would rank in Rounds 
3 and 4 (Okoli & Pawlowski, 2004). Participants 
were instructed to select no fewer than 10 
items from each of the lists of competencies, 
programming languages, and assessments. They 
were also advised to consider their opinions on 
each item in relation to the importance attributed 
by the overall group as indicated by the median 
rating score from Round 1. This instruction 
enabled participants to utilize deliberation as 
characterized by the Delphi approach without 
meeting with other experts in person. 

Eight programming languages were selected 
by at least half of the experts in the academic 
group. The industry group elected to include 
12 languages. All eight languages selected by 
at least half the experts in the academic group 
were also chosen by the industry group. The sole 
programming language chosen by all industry 
experts was JavaScript. No academic expert 
chose Greenfoot and no industry professional 
included Alice, Greenfoot, MATLAB,  
Scala, or Scratch.

Finally, the groups ranked 11 assessments. 
Because of the low number of assessments, the 
narrowing effect was expected to be minimal. 
Only essays were not chosen to be carried over 
into Rounds 3 and 4 and this omission was true 
for both groups.

The detailed data from Rounds 1 and 2 are not 
included in this article but are available in 
Sultana (2016).

Round 3 
The third round provided experts the opportunity 
to rank the items selected in the previous round. 
The participants were instructed to rank the items 
in each of the lists according to their importance 
for an introductory CS course for majors and 
non-majors. They were again advised to consider 
their opinions on each entry in relation to the 
importance attributed by the overall group as 
indicated by the number of experts in their group 

selecting it in Round 2. There were 19 total 
experts who participated in the third round with 
10 in the industry group (91%) and nine in the 
academic group (75%).

The academic group ranked 15 competencies and 
the industry experts ranked 12 competencies as 
shown in Table 1. The interquartile range (IQR) 
was calculated to identify the dispersion of the 
middle half of these data. The IQR values for 
the rankings of the top five competencies varied 
from 3.0 to 5.5 for the academic group and from 
5.3 to 7.5 for the industry group. 

The ranked programming languages from Round 
3 for both groups are presented in Table 2. The 
academic group ranked eight programming 
languages and chose Java as their most important 
and C++ as the next highest ranked. The industry 
experts ranked 12 languages and selected 
JavaScript and Python as their most important. 

Finally, the groups ranked 11 assessments. Both 
groups selected smaller programming activities 
among their highest ranked items and did so with 
little variability as indicated by the low IQR 
values of 1.5 for the academic group and 2.3 for 
the industry group. The academic experts also 
selected lab exercises as a top assessment and 
again did so with a low variability (IQR = 2.0). 
The industry group also selected term projects as 
tied for the most important assessments but with 
a high IQR value (8.3).

Kendall’s W was calculated to analyze the 
conformity among the rankings of the three 
categories by the expert groups. Linear 
transformations of the Kendall’s W were 
performed to describe the corresponding 
correlations (r) so the level of agreement for each 
of the categories by the groups could 
be identified (Zaiontz, 2013). P-values were 
calculated to determine significance. Neither 
group reached the consensus threshold of  
W = 0.7, as recommended by Schmidt (1997), on 
any of the three categories in Round 3.

Even so, the academic experts apparently agreed 
more on each of the three categories than  
did the industry experts. Kendall’s coefficient of 
concordance (W) tests were statistically 
significant, yet lacked full agreement, for the 
academic group on the competencies (WAC = 0.57, 
rAC = 0.52, p < 0.001), programming languages 
(WAL = 0.63, rAL = 0.58, p < 0.001), and 
assessments (WAA = 0.53, rAA = 0.48, p < 0.001).
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Competency

Round 3 Round 4

Academic 
Group

Industry 
Group

Academic 
Group

Industry 
Group

Median IQR Median IQR Median IQR Median IQR

Analyze algorithms for 
effectiveness and efficiency

9.0 4.0 7.0 5.3 9.0 2.0 7.0 3.0

Describe different types of data 
representation

- - 7.0 5.5 - - 7.0 4.0

Describe basic computer 
architecture and organization

12.0 5.5 6.5 9.0 11.0 3.0 6.0 7.0

Illustrate the use of databases and 
apply SQL

- - 9.5 4.5 - - 11.0 2.0

Explain the functionality of 
operating systems with examples

12.0 4.5 - - 13.0 2.5 - -

Describe common programming 
languages and popular uses

- - 7.5 6.3 - - 9.0 7.0

Demonstrate use of recursion in a 
program

12.0 3.0 - - 13.0 2.0 - -

Describe best practices for 
computer and data security  

14.0 2.0 - - 15.0 2.5 - -

Explain the role of modeling and 
simulation in computing

12.0 6.5 - - 14.0 1.5 - -

Describe process and practices 
in SE

11.0 4.5 5.0 6.0 10.0 1.0 3.0 5.0

Write functioning object-oriented 
programs 

3.0 4.5 7.0 3.8 2.0 0.5 9.0 5.0

Write functioning procedural 
programs 

1.0 4.5 5.5 5.3 1.0 1.0 6.0 5.0

Implement good documentation 
practices in programming

7.0 7.5 8.5 7.3 7.0 2.5 8.0 5.0

Demonstrate teamwork and 
interpersonal group skills

8.0 6.5 6.0 7.5 8.0 2.5 6.0 3.0

Demonstrate algorithmic thinking 5.0 5.5 - - 4.0 4.0 - -

Demonstrate computational 
thinking

6.0 3.0 - - 6.0 0.5 - -

Demonstrate problem solving 3.0 3.5 2.5 7.5 3.0 1.0 2.0 2.0

Demonstrate critical thinking and 
reasoning

5.0 3.0 3.0 7.3 5.0 2.0 2.0 5.0

Note. N = 9 for academic group and N = 10 for industry group in Round 3, and N = 9 for 
academic group and N = 11 for industry group in Round 4.

TABLE 1: Rounds 3 & 4 Median Rankings of Competencies for Introductory Computer Science 
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The industry experts also fell short of the 
agreement threshold in their rankings but 
achieved statistical significance in their rankings 
for assessments (WIA = 0.20, rIA = 0.11, p = 0.03). 
Their agreement levels for the competencies  
(WIC = 0.13, rIC = 0.03, p = 0.21) and languages 
(WIL = 0.10, rIL = 0.00, p = 0.43), however, lacked 
statistical significance.

Round 4
Because of the lack of consensus among either 
group on any of the three categories, the Round 
3 surveys were reproduced for Round 4. The 
coefficient of concordance values for each 
category were included and explained in the 
subsequent survey so the participants would 
have information on the level of consensus 
they had achieved. The median rank values 
were also provided so the experts could weigh 
their preferences against those of the rest of the 
group. There were 20 experts who participated 
in the final round. All eleven industry members 
participated (100%) and nine of the twelve 
academic experts (75%) completed surveys.
Round 4 rankings for competencies by both 
groups are presented in Table 1. The academic 
group made only slight changes to their rankings 
for competencies from Round 3. The situation 
was similar for the industry group’s rankings, 
though to a reduced extent. Most items
experienced a decrease in IQR, again pointing  

to less variation in competency rankings.
The Round 4 results for programming languages 
are shown in Table 2. The academic group 
changed little in their rankings from Round 3 
to Round 4. Java remained the top language, 
(median rank = 1.0, IQR = 2.0), followed  
by C++ (median rank = 2.0, IQR = 1.5). The 
industry group had a few more noteworthy 
changes in their rankings of programming 
languages. Java (median rank = 3.0, IQR = 2.0), 
joined Python (median rank = 3.0, IQR = 1.0) 
and JavaScript (median rank = 3.0, IQR = 4.0) 
as the most important languages. Assembly 
language held its position as last (median rank 
= 11.0) but experienced a sizable increase in 
variability (IQR = 9.0) among its rankings. 

The final round rankings for assessments by 
each group are shown in Table 3. Again, the 
academic group exhibited little difference in 
their ranked lists. Lab exercises were deemed the 
most important assessment by the group (median 
rank = 1.0, IQR = 1.5), followed by smaller 
programming activities (median rank = 2.0, IQR 
= 1.0). The industry group ranked assessments 
slightly differently than they had in Round 3. 
Smaller programming activities (median rank 
= 1.0, IQR = 4.0) was still chosen as the most 
important assessment device, though on its  
own in Round 4. 

Programming 
Language

Round 3 Round 4

Academic Group Industry Group Academic Group Industry Group

Median IQR Median IQR Median IQR Median IQR

Assembly 
Language

- - 10.0 4.3 - - 11.0 9.0

C 4.0 2.5 7.0 4.8 4.0 4.0 7.0 5.0

C# 6.0 2.5 4.5 5.8 8.0 3.0 4.0 3.0

C++ 2.0 2.0 5.5 4.0 2.0 1.5 6.0 4.0

HTML5 - - 5.5 5.8 - - 6.0 4.0

Java 1.0 1.5 4.5 6.8 1.0 2.0 3.0 7.0

JavaScript 7.0 3.5 3.0 2.3 6.0 3.5 3.0 4.0

PHP 6.0 2.5 6.0 7.3 6.0 2.0 9.0 5.0

PL/SQL - - 8.0 4.3 - - 8.0 4.0

Python 4.0 2.5 3.0 5.3 4.0 1.0 3.0 4.0

Ruby 6.0 2.0 9.5 3.3 6.0 1.0 9.0 6.0

Shell - - 9.0 4.8 - - 8.0 3.0

Note. N = 9 for academic group and N = 10 for industry group in Round 3 and N = 9 for 
academic group and N = 11 for industry group in Round 4.

TABLE 2: Round 3 & 4 Median Rankings of Programming Languages for 
Introductory Computer Science C
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Assessment

Round 3 Round 4

Academic Group
Industry 
Group

Academic 
Group

Industry 
Group

Median IQR Median IQR Median IQR Median IQR

Case Studies 9.0 4.5 6.5 2.3 8.0 2.5 7.0 1.0

Code Reviews 6.0 3.0 4.5 2.0 6.0 3.0 5.0 4.0

Concept Questions 5.0 2.5 6.0 5.8 4.0 3.5 5.0 3.0

Final Exams 7.0 3.0 8.0 3.0 8.0 3.5 9.0 3.0

Threaded Discussions 10.0 1.5 9.0 4.3 10.0 1.0 11.0 3.0

Interviews with 
Professionals

10.0 1.5 8.5 4.0 11.0 3.0 9.0 4.0

Lab Exercises 2.0 2.0 4.0 6.8 1.0 1.5 3.0 2.0

Quizzes 6.0 3.5 8.5 7.5 6.0 2.5 8.0 8.0

Small Program Activities 2.0 1.5 3.0 2.3 2.0 1.0 1.0 4.0

Team Program 
Assignments

4.0 3.5 6.0 5.5 3.0 2.5 6.0 4.0

Term Projects 6.0 4.5 3.0 8.3 6.0 3.0 4.0 5.0

Table 3: Rounds 3 & 4 Median Rankings of Assessments for Introductory Computer Science

Note. N = 9 for academic group and N = 10 for industry group for Round 3 and N = 9 for 
academic group, and N = 11 for industry group for Round 4.

Kendall’s coefficient of concordance (W) tests 
were again conducted. Consensus was only 
achieved by the academic group on the rankings 
for competencies (WAC = 0.84, rAC = 0.82, p < 
0.001). Though concordance values increased 
for both groups on each of the three categories, 
the academic experts again showed higher 
conformity than those from industry. Kendall’s 
W values again showed statistically significant 
ranked lists by the academic group on the 
competencies, programming languages (WAL = 
0.63, rAL = 0.58, p < 0.001), and assessments (WAA 
= 0.67, rAA = 0.62, p < 0.001). The concordance 
values for the industry group again revealed 
less conformity in their rankings but this time 
achieved statistical significance in their lists for 
both competencies (WIC = 0.32, rIC = 0.25, p < 
0.001) and assessments (WIA = 0.37, rIA = 0.31,  
p < 0.001). The industry group, however, 
displayed little agreement on programming 
languages and the lists lacked statistical 
significance (WIL = 0.12, rIL = 0.02, p = 0.25). 

CONCLUSIONS
The overall goal of this study was to identify 
regional experts’ recommendations to help better 
design an introductory CS course for majors 
and non-majors. Professionals in academia and 
industry can provide invaluable input on the 
content, and though their interests are varied, 

there can be similarity on recommended course 
components such as competencies, programming 
languages, and assessments. See Table 4 for 
a list of the competencies and Table 5 for the 
assessments suggested by the experts in this study.

The experts recommended a CS course that 
provides students with a focus on programming 
and SE process along with training in 
professional soft skills, such as problem solving, 
critical thinking, and teamwork. These same 
attributes were identified by the National 
Association of Colleges and Employers (2016) as 
being most important for career readiness. Those 
designing curriculum for CS and related fields 
should focus on helping students to develop 
these abilities. These experts also recommended 
that assessments be based on the opportunity 
to learn by doing; in the form of smaller and 
team programming activities, lab exercises, 
term projects, and more traditional concept 
questions. Code reviews should also be used to 
help students learn best practices and build their 
own knowledge. These types of assessments are 
very much in line with the recommendations 
of Crawley, Malmqvist, Östlund, Brodeur, and 
Edström (2014). Interestingly, the assessments 
recommended by these experts seemingly point 
more to an introductory course in SE, other  
than one in CS. 



89

Competency

Demonstrate problem solving

Demonstrate critical thinking and reasoning

Write functioning procedural programs employing programming fundamentals

Describe process and practices in Software Engineering

Demonstrate teamwork and interpersonal group skills

Write functioning object-oriented programs employing programming fundamentals

Implement good documentation practices in programming

Analyze algorithms for effectiveness and efficiency

Describe basic computer architecture and organization

Table 4: Top Recommended Competencies for Introductory Computer Science by 
Both Groups (Unranked)

Assessment

Smaller programming assignments

Lab exercises

Concept questions

Term projects

Code reviews

Team programming assignments

TABLE 5: Top Recommended Assessments 
for Introductory Computer Science by  
Both Groups (Unranked)

The choice of programming languages to use 
in introductory CS courses will likely remain 
a contentious one. A curriculum designer is 
well advised to use a language like Java, which 
continues to thrive in the classroom and in 
industry. It is important, however, to consider  
the audience and keep a close eye on the 
dynamic programming field. Python continues  
to increase in popularity and its accessibility  
and versatility make it a strong choice, especially 
for courses with non-majors (Enbody, Punch, & 
McCullen, 2009). Though visual programming 
languages like Alice, Greenfoot, and Scratch 
were not known to many of the participants  
in this study, an increasing number of experts in 
the literature recommend they should continue 
to be considered to introduce concepts in 
programming before transitioning to a language 
like Java or Python (Daly, 2011; JTFCC, 2013; 
Malan & Leitner, 2007).

A suggestion for additional research would be to 
include focus groups or one-on-one interviews 
with academic and industry professionals. The 
online Delphi approach used in this study was 
successful in that 20 academic and industry 
professionals remained engaged through four 
rounds and provided valuable information. 
Alternate designs, however, would allow for 
the study of the differences between the groups. 
Separate interviews would help to identify 
the reasons for experts’ choices and help the 
curriculum designer make more informed 
decisions. Finally, most academic programs  
have industry advisory groups that are  
excellent resources to provide this level of  
detail and for recommendations aimed at  
continuous improvement.

Simon G. Sultana, Ph.D. is an Associate 
Professor in the Department of Computer 
Science and Mathematics at Fresno Pacific 
University, California.

Philip A. Reed, Ph.D. is a Professor in 
the Department of STEM Education and 
Professional Studies at Old Dominion University, 
Norfolk, VA, and is a member of the Beta Chi 
Chapter of Epsilon Pi Tau.
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