
1Table of Contents
Volume XLIV, Number 1, Spring 2018

2 Infusing Computer Science in Engineering
 and Technology Education: An Integrated
 STEM Perspective
 By Paul A. Asunda

14 Profile of Workforce Development Educators:
 A Comparative Credential, Composition, and
 Characteristic Analysis
 By Thomas O. Williams, Jr., Jeremy V. Ernst, and Aaron C. Clark

28 Evolving Characteristics of Today’s Applied
 Engineering College-Level Educator: 2013 to 2017
 By Jeffrey M. Ulmer

2

T
h

e
 J

o
u

rn
a

l
o

f
Te

c
h

n
o

lo
g

y
S

tu
d

ie
s

Infusing Computer Science in Engineering and
Technology Education: An Integrated STEM Perspective
By Paul A. Asunda

ABSTRACT
This study examined how four engineering and
technology education teachers infused Computer
Science Principles (CSP) and Computational
Thinking (CT) practices into their classrooms from
an integrated STEM perspective. Two questions
guiding this inquiry were: (1) How do engineering
and technology education teachers infuse CSP and
CT into engineering and technology education?
(2) How do engineering and technology education
teachers assess students CSP and CT projects that
are integrated with engineering and technology
education? Data were collected through class
observations and semi-structured interviews. Using
an instrumental case study approach this study
identified key themes; pedagogy, programming,
assessment, and problem solving as strategies K-12
teachers should consider when designing instruction
that seeks to infuse computer science principles,
and computational thinking in engineering and
technology education and integrated STEM
coursework.

Keywords: computer science, computational thinking,
integrated STEM, engineering and technology
education, assessment, and problem solving

INTRODUCTION
Skills in the 21st century center on the ability to
analyze data, think critically, and solve problems
both in teams and as individuals. Cultivating
students with these types of skills requires an
emphasis on STEM education paired with the
breakthrough possibilities that facilitate creativity
in ideas and exploration. Recent national reports
emphasize the importance of Computer Science
(CS) within K-12 curricula, and highlight concerns
about national competitiveness and adequate
workforce training in the global economy
(National Science and Technology Council, 2013;
The Office of Science and Technology Policy
[OSTP], 2014; White House Fact Sheet, 2014).
The teaching of CS at the K-12 level seeks to
provide all students the opportunity to learn
CSP and develop CT skills deemed necessary
for success in the technological society (Yadav,
Hong, & Stephenson, 2016). This attention
may be in response to the growing demand for
individuals with computer science-related skills
and who are prepared to address critical issues

such as cyber security attacks (Koch & Gorges,
2016). As such, there is need for a well-prepared
workforce that can efficiently integrate and apply
any or a combination of the CSP seven big ideas
and CT skills in their work places (Mohaghegh &
McCauley, 2016). The CSP big ideas are creativity,
abstraction, data, algorithms, programming,
Internet, and global impact. In addition to the
seven big ideas underpinning computer science,
six computational thinking practices typify the
kinds of activities computer scientists engage
in, and by extension, must typify the learning
outcomes of a computer science course. These
are companions to the seven big ideas. These six
ideas include the following: analyzing the effects
of computation, creating computational artifacts,
using abstractions and models, analyzing problems
and artifacts, communicating processes and
results, and working effectively in teams (Synder,
Astrachabm, Briggs, & Cuny, 2011).

 The Framework for K-12 Science Education and
the Next Generation Science Standards (NGSS)
lists CT as one of the eight science and engineering
practices. These standards emphasize the
integration of science and engineering practices,
crosscutting concepts, and core ideas in science
disciplines in K-12 curricula. Such integration may
refer to making meaningful connections between
CSP and CT practices, and the core disciplinary
practices of each STEM domain, with the goal of
using this integrated knowledge to solve real-
world problems. Research reveals that integrated
learning also appeals to educators, because it
projects real-world experiences, links subject
areas, and fosters collaboration and networking
among teachers (Hecht, Russo & Flugman, 2009;
Siew, Nazir, & Chong, 2015). As such, Integrated
STEM (i-STEM) education is a relatively recent
phenomenon, particularly as it is still uncommon
in K-12 classrooms (Chiu, Price, & Ovrahim,
2015). Integrated STEM has been viewed as an
approach to teaching and learning in a manner
such that the curriculum and content of the four
individual STEM disciplines seamlessly merge
into real-world experiences contextually consistent
with authentic problems and applications in
STEM careers (Mobley, 2015; Sanders, 2009).
Synthesizing lessons from schools that integrate
STEM practices with computer science principles

3

In
fu

sin
g

 C
o

m
p

u
te

r S
c

ie
n

c
e

 in
 E

n
g

in
e

e
rin

g
 a

n
d

 Te
c

h
n

o
lo

g
y E

d
u

c
a

tio
n

:
A

n
 In

te
g

ra
te

d
 S

T
E

M
 P

e
rsp

e
c

tive
and computational thinking skills may begin to
tell a story about how teachers plan, instruct, and
assess CSP and CT in STEM programs.

Engineering and Technology education programs
offer curricular flexibility that provides a variety
of approaches to the infusion of computer science
fundamentals into a K-12 curriculum. However,
little information regarding K-12 computer
science program development and integration into
STEM areas is available in scholarly literature.
To this end, two questions guiding this inquiry
were: (1) How do engineering and technology
education teachers infuse computer science
principles (CSP) and CT into engineering and
technology education? (2) How do engineering
and technology education teachers assess students
CSP and CT projects integrated with engineering
and technology education?

METHOD
The interdisciplinary aspect of i-STEM provides a
rich test bed to infuse computer science principles
that enhance CT. Such an approach allows
numerous ways students at the K-12 level exercise
critical thinking as they explore the very many
ways a design challenge may be solved (Curzon,
Peckham, Taylor, Settle, & Roberts, 2009). As
such, this study purposefully selected and utilized
snowball technique (Patton, 2002) to examine
how four engineering and technology education
teachers who had attended and completed Project
Lead the Way (PLTW) summer CS training infused
CSP and CT practices into their classrooms. The
epistemology for this research was constructionism,
the focus being the construction of meaning from
the perspectives of these four teachers’ beliefs
and practices within the context of CSP, CT, and
i-STEM in engineering and technology education.
Crotty (1998) stated that constructionism is
the view that all knowledge, and therefore all
meaningful reality as such, is contingent upon
human practices, being constructed in and out of
interaction between human beings and their world
and developed and transmitted within an essentially
social context. This inquiry was designed to
be a multi-site collective case study with each
participant being viewed as a unit of analysis.
Participants for this study were four high school
teachers who were studied individually as cases
and jointly examined to better understand their
experiences. The study was limited to high schools
within a radius of 100 miles from the researcher.
In addition to driving the long distances to conduct
interviews and observe teachers’ natural settings,
a challenge to the study was the frequency with

which classroom observations were scheduled in
order to observe students’ working on CS-related
projects. These teachers taught in the Midwest
region of the United States and worked with
approximately 200 students (Grades 9-12). Two of
the teachers (pseudonyms Alex and John) taught at
ABC high school, which enrolled approximately
600 students, with the engineering and technology
courses being electives and attracting around 80
students (freshmen through seniors). Alex had three
years of teaching experience, and John who had
recently graduated from college was a first-year high
school teacher. Teacher Cory (pseudonym) taught
at EFG high school, which enrolled approximately
700 students, where approximately 70 students
were pursuing engineering and technology, and
other career and technical education (CTE) courses
as electives. He had taught high school for a total
of 20 years and was a Master PLTW teacher who
had trained many teachers in PLTW curricula in
the Midwest region. Teacher Brown (pseudonym)
taught at MNO high school, which enrolled
approximately 650 students, and had around 90
students (9-12 grade students) enrolled in the
engineering and technology education courses.
Teacher Brown had taught middle school for 7
years before transitioning to the high school setting,
where he had taught for the last 12 years. All four
teachers had graduated with a bachelor’s degree in
technology education / engineering and technology
education. Teacher John also had a computer science
minor for his undergraduate degree in his teacher
preparation program.

DATA COLLECTION
A classroom observation coding instrument was
developed to examine teacher’s practices with students
during instruction of CSP and CT in an i-STEM
environment. Specifically, the practices to be observed
were selected from the Secondary Science Teacher
Analysis Matrix (STAM) (Gallagher & Parker,
1995) to code specific behaviors and actions within
the teacher’s classroom. The rationale for selecting
the STAM instrument items was that it addressed
the research questions guiding this study: It guided
the observation of CSP and CT practices related to
engineering and technology education focused around
the integration of STEM concepts. As such, the
researcher observed and interviewed teachers based
on the following items: structure of content; examples
and connections; methods; labs, demonstrations
and hands-on involvement; kinds of assessments;
students’ questions; student-initiated activity; students’
understanding of teachers expectations; resources
available, and students’ works.

4

T
h

e
 J

o
u

rn
a

l
o

f
Te

c
h

n
o

lo
g

y
S

tu
d

ie
s

The observational data were collected from
classroom visits, which included a total of 4-5
visits that lasted 50 minutes at all three schools.
The total was 15 visits: teacher Cory was visited
6 times, Alex and John were visited 3 times each
(i.e., 6 visits between the two teachers), and
teacher Brown also was visited 3 times. Face-
to-face interviews with each teacher lasted up to
50 minutes. As such, a total of 15 lessons were
observed, and a semi-structured interview with
open-ended questions was utilized to supplement
classroom observation data. Berg (2001) stated
that semi-structured interview guides allowed
the interviewer to probe far beyond answers
that might be generated by pre-prepared
standardized questions. Likewise, Patton (2002)
posited that open-ended interview questions
enabled researchers to understand and capture
participants’ views. The four teachers were then
invited to participate in a 50-minute interview,
and all the interviews were audio recorded and
transcribed verbatim.

DATA ANALYSIS
One of the researcher’s challenges was to obtain
and verify the true meaning of each participant’s
responses to the questions asked (Gall, Gall,
& Borg, 2003). To begin making meaning of
collected data (i.e., the interview data from the
four teachers and classroom observations), the
four interviews were analyzed separately as
described by Miles and Huberman (1994) during
data reduction, data display, conclusion drawing,
and verification phases. The data analysis
process helped the researcher approach the data
without preconceptions about teacher’s beliefs
and practices. During this process the researcher
reflected on the purpose of the study and the
guiding research questions as they noted phrases
and words that revealed each participant’s CS
teaching practices integrated in engineering and
technology education with a focus in STEM
experiences. The researcher then identified text
segments that contained the same meaning and
sought to derive in vivo codes from transcripts
by identifying repetitive, descriptive, and
interpretive phrases of participants’ experiences,
which were then developed into categories such
as programming and pedagogy. Boeije (2009)
stated that in vivo codes are not just catchy
words; rather, they pinpoint the meaning of
a certain experience or event. The researcher
identified 14 initial in vivo codes in order (i.e.,
computer science, evaluation, information
science, criticism, data, pedagogy, computer

programming, assessment, technology, problem
solving, design, teaching, coding, open
ended). These codes were then compared with
classroom observation data as a triangulation
measure to further affirm the initial codes that
had emerged from the classroom interviews
into categories and subcategories. Afterward
the researcher wrote memos describing
identified categories to further reduce the data.
Participants’ explanations and ideas that had
similar meanings were then collapsed into
key categories informed by subcategories
identified by reviewing the initial categories
and participants’ transcripts again. However, it
should be noted that emergent categories had
text descriptors in identified subcategories that
overlapped. At this juncture, the researcher
then embarked on establishing reliability of
emerging themes by sharing these initial codes
and descriptors with study participants for
member- checking purposes through email
correspondence for more than a month (Mays
& Pope, 1995). Mays and Pope (1995) use
the term “reliability” and claim that it is a
significant criterion for assessing the value
of a piece of qualitative research. During
this process study participants crystallized
their meanings and reduced the initial codes
to eight, again in no order of priority to
computer science, programming, teaching,
coding, pedagogy, open-ended, evaluation, and
assessment. The researcher then grouped these
codes with accompanying text as suggested
by participants into relevant categories. After
member checks and reliability testing, the
researcher proceeded to use Microsoft excel
to display and organize data for cross-case
analysis. Miles and Huberman (1994) defined
cross-case analysis as searching for patterns,
similarities, and differences across cases with
similar variables and similar outcome measures.
The researcher took note of both units to be
eliminated and those that would be retained.
Related terms and data with similar expressions
(e.g., terms like “programming” “coding”)
that study participants had pointed out during
member checking to express similar meanings
were further grouped together into identified
categories. The researcher then embarked on
developing themes by grouping identified
categories that had similar meaning into core
themes. Table 1 provides the themes identified
during this stage of analysis; they are termed as
categories, along with subcategory labels, and
descriptions as per the participants of this study.

5

In
fu

sin
g

 C
o

m
p

u
te

r S
c

ie
n

c
e

 in
 E

n
g

in
e

e
rin

g
 a

n
d

 Te
c

h
n

o
lo

g
y E

d
u

c
a

tio
n

:
A

n
 In

te
g

ra
te

d
 S

T
E

M
 P

e
rsp

e
c

tive

Categories Subcategories Descriptors

Pedagogy
Interactive

Working together with, and having an influence on learning
process of students

Learning curve Students’ progress in gaining new knowledge and skills.

Remember Recall an event or an experience from the past.

Work sheets
Paper that teacher shares with student to help them learn similar
concepts and skills as they progress through a given unit.

Culminating projects
Series of related projects that give students an opportunity to
demonstrate what they have learned at end of a given unit.

Tutorials
An interactive method of learning that demonstrates concepts/
skills/knowledge you want students to attain.

Standards
Documented specifications that recommend what students
should know and be able to do at a given grade level.

Unit of learning
Coherent set of concepts that teachers will instruct over a period
of four to five weeks.

Backward design
A method of designing a unit of learning by setting an end
goal you want students to attain before choosing instructional
methods and forms of assessment.

Scaffolding
Using a variety of instructional techniques to help students learn
progressively toward attainment of a given end goal.

Programming
Coding / Programming

Writing a set of instructions to execute a desired end goal in a
computer program.

Scripting languages
A form of communication, as such instructions that computers
utilize to execute give task to attain a desired goal (e.g., HTML,
JAVA).

Syntax
Relates to the spelling and grammar of a programming language
and hence good clean code.

Tool kits
Companion wizard like program that helps students learn a
given programming language (e.g., Tkinter in Python).

Assessment Criticism Offering value statements to make students’ work better.

Correlation Connecting end result of students work with process.

Understand
Students being able to demonstrate the desired end goal of unit
of leaning set by teacher.

Rubrics
Coherent set of criteria that reflect given standards and includes
descriptions of expected levels of student’s performance.

Evaluation Assigning value statements to students finished assignments.

Documentation
Student’s written thoughts reflecting how they arrived at their
final solution.

Problem
solving

Open ended
No specified conditions that hinder the adoption of multiple
solutions to a design challenge.

Backward design
No specified conditions that hinder the adoption of multiple
solutions to a design challenge.

Scaffold
Using a variety of strategies to help provide a solution to a
design challenge.

Planning
Process of thinking about, and organizing a strategy and key
activities required to solve a given design challenge.

Iterative
Repeating a given procedure in an effort to optimize possible
solutions to a given design challenge.

Table1: Categories That Informed Themes Generated by Researcher

6

T
h

e
 J

o
u

rn
a

l
o

f
Te

c
h

n
o

lo
g

y
S

tu
d

ie
s

FINDINGS
This study sought to find out how engineering and
technology education teachers infuse computer
science principles and computational thinking
into engineering and technology education, in
addition to their assessment practices. Quotes
from the four teachers have been used throughout
this section to emphasize core themes that
emerged with no observed priority or order.
Four core themes (pedagogy, problem solving,
programming, assessment) were identified from
the reduced meanings of participants’ verbatim
transcripts. Verbatim quotes from participants
were used throughout this section to emphasize
core themes.

Core Theme Pedagogy
Responses supporting this theme offer insights
into how teachers scaffold CSP and CT into
engineering and technology education. Cory
shared that integration of computer science into
engineering and technology education courses
had been facilitated by organizations like code.
org, and the Computer Science Teachers’
Association (CSTA) working closely with the
College Board. He shared that many forms of
curricula exist that teachers could utilize. For
example, author please explain abbreviation
(PLTW) of which teacher Cory was certified
to teach, and had facilitated professional
development sessions to prepare other teachers
integrate CSP and CT in their engineering and
technology courses. He was of the view that these
curricula offered a framework that teachers could
utilize to teach CSP and CT in engineering and
technology education. In contrast, Alex defined
scaffolding as a teaching and learning strategy
by which he helps his students learn how to write
code and develop programming skills through
toolkits and worksheets. Brown shared that he
used a mix of hands-on activities and projects
to help his students with CSP and CT concepts,
whereas John viewed the process of teaching
CSP and CT through design problem solving
challenges to be synonymous to engineering
design practices. In visiting the classrooms,
the researcher was able to observe students
working on various projects. For example, a data
visualization project that required students to
design data collection tools and utilize the tool to
collect data that they could eventually analyze;
design of interactive graphical user interface
(GUI); and raspberry pi projects that looked
into designing alarm systems controlled by a
sensor and a camera. These projects required that

students have some coding background. Cory
used reflecting practices and recall procedures
to help students relate their current projects to
previous learning experiences. For example, he
stated “ … other languages as one of the common
widget is a canvas as I have mentioned before
and we have all encountered that all the way
back to our very first day in scratch right a big
canvas that you use again.” In contrast, teacher
Alex mentioned that this being new to his school
and teaching, he incorporated a survey to help
him understand his students’ needs and what
kind of projects they would enjoy. Especially
because engineering and technology courses
were electives, he had to find a balance to grow
the program. He also mentioned that he would
give course material that looked into CSP and
CT upfront so as to give his students background
information. For example, he mentioned that
cybersecurity was new to him and to engage his
students with hands-on activities he shared that,
“I went to a workshop this summer, I got a lot of
materials on cybersecurity design challenges, I
use these materials to guide students [to] make
their own encryption device of some sort.”
Brown shared that there were worksheets that he
accessed from the Internet to help his instruction,
and John pointed out that he also used worksheets
in his teaching; he was quick to mention NGSS
as key factors in his teaching and planning. This
was a sentiment shared by the other teachers,
and they recognized the value of standards in
the planning of their teaching of CS concepts in
engineering and technology education. One key
aspect all the teachers shared is that the projects
they conducted were culminating in nature. As
such, a given CS unit and designated project
typically runs approximately four weeks with
some buffer time built in. He pointed out that his
teaching of CS including projects was modeled
around the engineering design cycle.

Core Theme Programming
John noted that the good thing about computer
science “is that there are a lot of different
programming languages, and some of them
are far easier to learn than others.” John who
had a minor in computer science stated that he
helps his students learn how to write code by
asking them to first verbalize what they want
the code to do. He stated, “before you write any
code or anything you have to think through the
problem in your head. So I can give the students
a problem and then have them explain to me or a
partner how they would solve it and the write it

7down step by step.” All the teachers mentioned
that they infused object- oriented programming
(OOP) into their engineering and technology
education courses that enhance STEM learning.
According to Cory this is when “someone
combined data and functionality and wrapped it
inside something called an object.” For example,
in one class observation, Cory had his students
program a sphere that could be programmed to
change location on the canvas, through a toolkit
called Tkinter in python, one of the many toolkits
he shared with his students. He began by having
the students generate code to create the canvas
and a sphere (i.e., the object). As they did this
exercise Cory reminded his students about classes
and objects. As the students worked in the OOP
environment, classes and objects became the two
main aspects of object-oriented programming.
A class creates a new type where objects are
instances of the class (Corradi & Leonardi,
2001). Further, teachers, Brown, Cory, Alex,
and John shared that that they all introduced
their students to scratch software as an initial
tool to generate CS and programming interest
in their students. Scratch (https://scratch.mit.
edu/) is a free programming language developed
by the Massachusetts Institute of Technology
(MIT) whereby individuals can program their
own interactive stories, games, and animations
and share their creations with others in the
online community. Cory mentioned that he
started out with Scratch, and then introduced his
students to app inventor, an open-source web
application originally provided by Google, and
now maintained by MIT, and finally Python, a
high-level programming language for general-
purpose programming. In contrast, Alex and
John mentioned that they looked into Python and
JAVA, while Brown worked with Scratch and
Python. John noted that Scratch gave students an
opportunity to see drag and drop functionality
from a programming perspective. He also added
that Hypertext Markup Language (HTML) and
other languages like Cascading Style Sheets
(CSS) interested his students. According to Alex,
he emphasized some key terms when teaching
programming, and asked his students to take note
of when learning programming included syntax,
algorithms, good code, and control flow.

Core Theme Problem Solving
All the teachers attested that the essence of
teaching CS to their students as an alternative way
to equip them with problem solving skills. They
all noted that solving a problem in CS resembled

the process of solving a design challenge in
engineering and technology education through
the process of engineering design. Cory shared
depending on the curriculum being used to
introduce CS to high school students, sometimes
the problems that students work on are not open
ended. He also shared that he works on making
the challenges his students work on as open-ended
as possible. Likewise, John agreed and shared
that the open-ended nature helped him explain the
process of solving the problem to students using
a backward design process. He stated, “I set it
up in like a three step process, using backwards
design a lot so I would take what objectives I
want like what I want the students to learn and my
goals for teaching and hopefully as I instruct, the
student will be able to make the connection.” Alex
on the other hand, posited that it was imperative
for students to learn how to write good code in
order to successfully solve CS-related challenges.
He mentioned that good code was clean, easy
to follow, and would be easy to troubleshoot.
Teacher Brown suggested that building an opened
nature perspective into CS problems developed
creativity in students, as such a key tenet of
constructionist learning theories where students
constructed mental representations of possible
solutions using the engineering design process
to understand the how possible solutions to a
given challenge might look like. Constructionism
advocates student-centered, discovery learning
whereby students use information they already
know to acquire more knowledge (Alesandrini
& Larson, 2002). Students learn through
participation in project-based learning where
they make connections between different ideas
and areas of knowledge facilitated by the teacher
through coaching rather than using lectures or
step-by-step guidance. Cory noted that toolkits
(e.g., TKinster) provided through some of the
programming languages made realization of a
solution to a problem become a living object
through a visual medium.

Core Theme Assessment
Participants shared that assessment was seen
to be a challenging aspect of infusing CS into
engineering and technology education. Alex
mentioned having criteria was key and aligning
these to the requirements shared with students
beforehand. Cory, on the other hand, shared that
he used rubrics. The PLTW curricula he utilized
provided rubrics that he could use in evaluating
students assessments, although he also considered
other informal measures and asked that students

In
fu

sin
g

 C
o

m
p

u
te

r S
c

ie
n

c
e

 in
 E

n
g

in
e

e
rin

g
 a

n
d

 Te
c

h
n

o
lo

g
y E

d
u

c
a

tio
n

:
A

n
 In

te
g

ra
te

d
 S

T
E

M
 P

e
rsp

e
c

tive

8

T
h

e
 J

o
u

rn
a

l
o

f
Te

c
h

n
o

lo
g

y
S

tu
d

ie
s

document all their work as they solved each
presented challenge. For example, he mentioned
that he considered the functionality of the final
project and if students were able to adhere to the
criteria shared. Cory also stated that, “I really
really want them to learn. I keep on watching
for the kids who are putting an effort and try to
learn, the projects are cumulative in a sense and
how can I give a failing grade if a kid shows me
growth.”

John shared that “grading” as such was a
challenge, in the same vein Alex posited that
he did not have paper and pencil tests in his
CS classroom, rather projects. Like Cory,
Brown also utilized PLTW rubrics to assess his
students’ completed assignments. For example,
the PLTW rubric for App design, Scratch game
or Story assignments had the same eight criteria
elements and had a grading scale that ranged
from 4 to 1, with 4 being the highest score and 1
being the lowest. The criteria elements include:
solves problem, documentation, collaboration,
presentation, appropriate algorithm, explanation
of algorithm, explanation of problem solution,
and planning. For example, under the criterion
‘solves problem’ to score a 4, a student’s
“artifact fully addresses personal, practical, or
societal intent posed by problem statement,”
a score of 3 depicted that “artifact addresses
the personal, practical, or societal intent posed
by problem statement,” a score of 2 meant
that “artifact mostly addresses the personal,
practical, or societal intent posed by problem
statement”, and a score of 1 meant “artifact does
not adequately address the personal, practical,
or societal intent posed by problem statement.”
As such, the PLTW rubric elements were similar
to engineering design rubrics (e.g., Asunda &
Hill 2007; Groves, Abts, & Goldberg, 2014;
Robelen, 2013; Spurlin, Rajala, & Lavelle,
2008) that have been used to assess engineering
design challenges with the exception of
the criteria “appropriate algorithm” and
“explanation of algorithm.” These two criteria
required that students show that the “code
demonstrates use of appropriate algorithms”
as well as provide “comments that clearly and
thoroughly explain the algorithm(s).” The
engineering design process asks for students to
show the iteration progression they utilize to
reach a viable solution and provide evidence
of optimization of chosen solution, as such a
similar process to the two criteria “appropriate
algorithm” and “explanation of algorithm.”

DISCUSSION
Computer scientists, just like engineers, play a
central role in our technological infrastructure.
They develop hardware, software and other
applications for use by the military, businesses,
and average consumers (Singh, 2016). The
findings of this study revealed problem solving
as a key element in infusing CSP and CT into
STEM-related coursework at the K-12 level. The
use of problem solving as a strategy to develop
and impart in students critical thinking skills in
engineering and technology education programs
has been reported by several authors (e.g., Eison,
2010; Pacific Policy Research Center, 2010;
Ralston & Bays, 2015). Participants of this study
posited that the procedure their students utilized
to solve computer science design challenges was
similar to the engineering design problem solving
process utilized by engineers and technologists
to solve everyday challenges that society faces.
Today, students as young as six and seven are
learning the logic behind computer programs and,
in some cases, how to create simple programs
of their own. Working with age-appropriate
programming tools like Scratch, App inventor
etc. and curricula, students can be innovative
in their solving of given design challenges as
they explore and experiment with crosscutting
interdisciplinary skills and knowledge as detailed
by NGSS (Bers, 2010; Bers & Horn, 2010;
Grover & Pea, 2013; NGSS, 2013). Programming
at the K-12 consists of two bodies of theoretical
work: computational thinking, which
discourses problem solving with computers;
and technological literacy and fluency, which
addresses expressivity with new technologies
(Barr, Harrison, & Conery, 2011; Grover &
Pea, 2013; Guzdial, 2008; Lee et al., 2011;
Next Generation Science Standards [NGSS],
2013; Wing 2008). Utilizing problem solving
strategies to innovatively design and program
computational artifacts can facilitate students’
engagement in high-level cognitive processes
such as divergent thinking, and reflective practice
(Resnick, 2007). As such, the findings of this
study report that programming as a vehicle to
develop computational thinking practices may
lead to the realization of viable solutions to given
design challenges.

With regards to core themes pedagogy and
assessment, Magana, Brophy, and Bodner, (2012)
investigated aspects of teaching and learning
for integrating CS modeling and simulation
practices in STEM coursework. Aspects of

9teaching relate to the identification of intended
learning outcomes instructors would like to
accomplish when integrating computational
tools into their disciplinary courses. On the other
hand, learning aspects for integrating modeling
and simulation practices have centered on the
reasoning processes afforded by computational
tools (Magana et al., 2017), as well as scaffolding
strategies that can overcome possible cognitive
overload (Vieira, Magana, Falk, & Garcia,
2017; Vieira, Magana, Roy, Falk, & Reese,
2016). Aspects of teaching and learning inform
assessment practices, as well as pedagogical
strategies that include hands-on, real-world
projects. Such is a vehicle for the integration of
CS practices and STEM coursework, as a result
helping students develop useful skills and take
what they learn in the classroom and apply it to
everyday life. Thus, project- and problem-based
challenges and learning through modeling and
simulation practices engage students in rigorous
and relevant learning experiences that may
generate their enthusiasm as well as impart in
them CSP and CT skills and knowledge. On the
other hand, assessments that teachers utilize are
processes used to examine students’ assignments
with the aspects of teaching and learning that
the teacher has identified as appropriate for a
given learning segment. In essence, assessment
practices that these teachers utilized helped them
gauge the development of CSP and CT skills by
using design challenges as a vehicle to support
the learning of crosscutting concepts in i-STEM
environments.

CONCLUSION
In conclusion, the findings of this study suggest
that i-STEM opens a range of possibilities by
which teachers at the K-12 level may utilize to
further develop in 21st century students skills
that become future workforce requirements to
be competitive at the workplace. Infusion of
CSP and CT into STEM-related course work
engages students in applied learning as they
solve design challenges through a variety of
crosscutting concepts. Such a process is similar to
the engineering design process that exemplifies a
process of steps that are developmental, structured,
and iterative in solving design problems, building
prototypes, and testing solutions. As such students
are exposed to critical skills in problem solving,
teamwork, time management, communication,
and leadership strategies. Such an approach may
ensure college and career readiness for the STEM-
enabled 21st century careers.

LIMITATIONS AND
RECOMMENDATIONS
FOR FUTURE RESEARCH
As with all educational research, there
are limitations to this study that must be
addressed. The infusion of CS into STEM-
related courses through engineering and
technology education is an emerging area
of work. As such, there is limited literature
with regards to how teachers integrated their
teaching as well as assessment process. NGSS
standards are a recent introduction to the K-12
arena, and teachers are still learning how to
incorporate them into already existing state
standards for instructional planning purposes.
Besides, states are still grappling with where
CS fits in the K-12 curricula, and there is
a need for qualified teachers. First, a small
number of participants within a radius of 100
miles were purposefully chosen for this study,
limiting the ability to utilize sophisticated
statistical methodologies and examine how
engineering and technology education teachers
infuse CSP and CT into engineering and
technology education. Second, assessment
strategies were varied and it was difficult to
comprehend and relate how participants of this
study may have integrated NGSS suggestions
into assessing students’ CS integrated STEM
assignments and projects. It was noted
that participants’ utilized rubrics and that
choice may not clearly highlight the role of
performance assessment as highlighted in the
NGSS. Although there is much that remains
to be done toward integration of CS into K-12
teaching, caution must be used in generalizing
findings of this study to larger populations.
Future research studies would benefit from
the use of a larger sample. Third, investigate
assessment practices that clearly articulate
and align CS to performance assessment,
and lastly computer science departments
and STEM educators should continue to
collaborate and develop CS coursework that
can be integrated into teacher education course
work concepts and pedagogical knowledge
practices.

Paul A. Asunda is an Assistant Professor
of Engineering and Technology Teacher
Education in the Department of Technology,
Leadership, and Innovation at Purdue
University, West Lafayette, IN. He is a
member of the Gamma Rho Chapter of
Epsilon Pi Tau.

In
fu

sin
g

 C
o

m
p

u
te

r S
c

ie
n

c
e

 in
 E

n
g

in
e

e
rin

g
 a

n
d

 Te
c

h
n

o
lo

g
y E

d
u

c
a

tio
n

:
A

n
 In

te
g

ra
te

d
 S

T
E

M
 P

e
rsp

e
c

tive

10

T
h

e
 J

o
u

rn
a

l
o

f
Te

c
h

n
o

lo
g

y
S

tu
d

ie
s

REFERENCES

Alesandrini, K., & Larson, L. (2002). Teachers bridge to constructivism. The Clearing House, 119-121.

Asunda, P. A., & Hill, B. R. (2007). Critical features of engineering design in technology education.
Journal of Industrial Technology Education. 44 (1), 25-48.

Barr, D., Harrison, J., & Conery, L. (2011) Computational thinking: A digital age skill for everyone.
Learning & Leading with Technology, 38(6), 20-23.

Berg, B. L. (2001). Qualitative research methods for the social sciences (4th ed.). Needham Heights,
MA: Allyn & Bacon.

Bers, M. (2010) Beyond computer literacy: Supporting youth’s positive development through technology.
New Directions for Youth Development, 128, 13-23.

Bers, M. U., & Horn, M. S. (2010). Tangible programming in early childhood: revisiting developmental
assumptions through new technologies. In I. R. Berson, & M. J. Berson (Eds.), High-tech tots:
Childhood in a digital world (pp. 49–70). Greenwich, CT: Information Age Publishing.

Boeije, H. (2002). A purposeful approach to the constant comparative method in the analysis of
qualitative interviews. Quality & Quantity, 36, 391–409. doi:10.1023/A:1020909529486.

Chiu, A., Price, A. C., Ovrahim, E. (2015, April). Supporting elementary and middle school STEM
education at the whole school level: A review of the literature. Paper presented at the Annual
International Conference of the National Association for Research in Science Teaching [NARST],
Chicago, IL. Retrieved from http://www.msichicago.org/fileadmin/Education/pdf/MSI-SLI-
Literature_Review_White_Paper.pdf

Corradi, A., & Leornadi, L. (2001). Static vs. dynamic issues in object-oriented programming
languages. Retrieved from https://adtmag.com/Articles/2001/07/13/Static-vs-Dynamic-Issues-in-
ObjectOriented-Programming-Languages.aspx?p=1

Crotty, M. (1998). The foundations of social research: Meaning and perspective in the research process.
Thousand Oaks, CA: Sage.

Curzon, P., Peckham, J., Taylor, H., Settle, A., & Roberts, E. (2009). Computational Thinking (CT): On
Weaving It In. SIGCSE Bull., 41(3), 201-202. doi:10.1145/1595496.1562941.

Eison, J. (2010). Using active learning instructional strategies to create excitement and
enhance learning. Retrieved from http://www.cte.cornell.edu/documents/presentations/
ActiveLearningCreatingExcitement in the Classroom-Handout.pdf

Gallagher, J., & Parker, J. (1995). Secondary teaching analysis matrix (STAM). East Lansing, MI:
Michigan State University.

Gall, M. D., Gall, J. P., & Borg, W. R. (2003). Educational research: An introduction (7th ed.). New
York: Allyn and Bacon.

Grover, S., & Pea, R. (2013). Computational thinking in K-12: A review of the state of the field.
Educational Researcher 42(1), 38-43.

Groves, F. J., Abts, R. L., & Goldberg, L.G. (2014). Using an engineering design process portfolio
scoring rubric to structure online high school engineering education. Conference presentation at
2014 ASEE. Retrieved from http://www.asee.org/public/conferences/32/papers/ 10738/view

Guzdial, M. (2008). Paving the way for computational thinking. Communications of the ACM, 51(8),
25–27.

Hecht, D., Russo, M., & Flugman, B. (2009). Infusing mathematics into science, technology, and
engineering classes: Lessons learned from middle school teachers and students. Retrieved from
http://www.hofstra.edu/pdf/Academics/Colleges/SOEAHS/ctl/mstp/mstp_STEM_Symposium.pdf.

11Koch, M., & Gorges, T. (2016). Curricular influences on female afterschool facilitators’ computer
science interests and career choices. Journal of Science Education & Technology, 25(5), 782-794.
doi:10.1007/s10956-016-9636-2

Lee, I., Martin, F., Denner, J., Coulter, B., Allan, W., Erickson, J., Malyn-Smith, J. & Werner,
L. (2011). Computational Thinking for Youth in Practice. ACM Inroads, 2(1), 32-37.
doi:10.1145/1929887.1929902

Magana, A. J., Brophy, S. P., & Bodner, G. M. (2012). Instructors’ intended learning outcomes for using
computational simulations as learning tools. Journal of Engineering Education, 101(2), 220-243.

Mays, N., & Pope, C. (1995). Rigor and qualitative research. British Medical Journal, 311(6997),
109-112.

Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis: A sourcebook of new methods.
Newbury Park, CA: Sage.

Mobley, C. M. (2015). Development of the SETIS instrument to measure teachers’ self-efficacy to teach
science in an integrated STEM framework (Unpublished doctoral dissertation). University of
Tennessee, Knoxville.

Mohaghegh, M., & McCauley, M. (2016). Computational thinking: The skill set of the 21st century.
International Journal of Computer Science and Information Technologies (IJCSIT), 7(3), 1524-1530.

Next Generation Science Standards [NGSS]. (2013). The next generation science standards. Retrieved
from: http://www.nextgenscience.org/next-generation-science-standards

National Science and Technology Council. (2013). A report by committee on STEM education national
science and technology council. Federal science, technology, engineering, and mathematics (STEM)
education 5-Year strategic Plan. Retrieved from https://www.whitehouse.gov/sites/default/files/
microsites/ostp/stem_stratplan_2013.pdf

Pacific Policy Research Center. (2010). 21st century skills for students and teachers. Honolulu:
Kamehameha Schools, Research & Evaluation Division.

Patton, M. Q. (2002). Qualitative research & evaluation methods (3rd ed.). Thousand Oaks, CA:

Office of Science and Technology Policy [OSTP] (2014). Progress report on coordinating federal
science, technology, engineering, and mathematics (STEM) education. Retrieved from https://www.
whitehouse.gov/sites/default/files/microsites/ostp/stem_ed_budget_supplement_fy16-march-2015.
pdf

Ralston, P., & Bays, C. (2015). Critical thinking development in undergraduate engineering students
from freshman through senior year: A 3-cohort longitudinal study. American Journal of Engineering
Education, 6(2), 85-98.

Resnick, M. (2007). All I really need to know (about creative thinking) I learned (by studying how
children learn) in kindergarten. ACM Creativity & Cognition Conference, Washington DC, June
2007. Retrieved from http://web.media.mit.edu/~mres/papers.html.

Robelen, E. (2013). AP engineering may be on the horizon. Education Week, March 29, 2013. Retrieved
from http://blogs.edweek.org/edweek/curriculum/2013/03 /ap_engineering_may_be_on_the_
horizon.html.

Sanders, M. (2009). STEM, STEM education, STEM mania. Technology Teacher, 68(4), 20-26.

Siew, N. M., Nazir, A., & Chong, C. L., (2015). The perceptions of pre-service and in-service teachers
regarding a project-based STEM approach to teaching science. doi: 10.1186/2193-1801-4-8.
eCollection 2015.

Singh, H. (2016). What is the best area of study to get into with computer coding focus, Retrieved from
https://www.careervillage.org/questions/43776/

In
fu

sin
g

 C
o

m
p

u
te

r S
c

ie
n

c
e

 in
 E

n
g

in
e

e
rin

g
 a

n
d

 Te
c

h
n

o
lo

g
y E

d
u

c
a

tio
n

:
A

n
 In

te
g

ra
te

d
 S

T
E

M
 P

e
rsp

e
c

tive

12

T
h

e
 J

o
u

rn
a

l
o

f
Te

c
h

n
o

lo
g

y
S

tu
d

ie
s

Spurlin, E. J. Rajala, A. S., Lavelle, P. J., Eds. (2008). Designing better engineering education through
assessment: A practical resource for faculty and department chairs on using assessment and ABET
criteria to improve student learning. Stylus Publishing, Sterling, Virginia

Synder L., Astrachabm, O., Briggs, A., & Cuny, J. (2011). AP computer science principles: Six
computational thinking practices - AP Computer Science Principles, Retrieved from https://
csprinciples.cs.washington.edu/sixpractices.html

Vieira, C., Magana, A. J., Falk, M. L., & Garcia, R. E. (2017). Writing in-code comments to self-explain
in computational science and engineering education. ACM Transactions on Computing Education
(TOCE).

Vieira, C., Magana, A. J., Roy, A., Falk, L. M., & Reese, J. M. (2016). Exploring undergraduate students’
computational literacy in the context of problem solving. Computers in Education Journal., 7(1),
100-112.

White House, Fact Sheet (2014). New commitments to support computer science education. Retrieved
from http://www.whitehouse.gov/the-press-office/2014/12/08/fact-sheet-new-commit-ments-support-
computer-science-education

Wing, J. (2008). Computational thinking and thinking about computing. Philosophical Transactions of
The Royal Society A, 366, 3717-3725. doi:10.1098/rsta.2008.0118

Yadav, A., Hong, H., & Stephenson, C. (2016). Computational thinking for all: Pedagogical approaches
to embedding 21st century problem solving in K-12 Classrooms. TechTrends, 60(6), 565–568.
doi:10.1007/s11528-016-0087

