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Infusing Computer Science in Engineering and  
Technology Education: An Integrated STEM Perspective
By Paul A. Asunda

ABSTRACT
This study examined how four engineering and 
technology education teachers infused Computer 
Science Principles (CSP) and Computational 
Thinking (CT) practices into their classrooms from 
an integrated STEM perspective. Two questions 
guiding this inquiry were: (1) How do engineering 
and technology education teachers infuse CSP and 
CT into engineering and technology education? 
(2) How do engineering and technology education 
teachers assess students CSP and CT projects that 
are integrated with engineering and technology 
education? Data were collected through class 
observations and semi-structured interviews. Using 
an instrumental case study approach this study 
identified key themes; pedagogy, programming, 
assessment, and problem solving as strategies K-12 
teachers should consider when designing instruction 
that seeks to infuse computer science principles, 
and computational thinking in engineering and 
technology education and integrated STEM 
coursework.

Keywords: computer science, computational thinking, 
integrated STEM, engineering and technology 
education, assessment, and problem solving

INTRODUCTION
Skills in the 21st century center on the ability to 
analyze data, think critically, and solve problems 
both in teams and as individuals. Cultivating 
students with these types of skills requires an 
emphasis on STEM education paired with the 
breakthrough possibilities that facilitate creativity 
in ideas and exploration. Recent national reports 
emphasize the importance of Computer Science 
(CS) within K-12 curricula, and highlight concerns 
about national competitiveness and adequate 
workforce training in the global economy 
(National Science and Technology Council, 2013; 
The Office of Science and Technology Policy 
[OSTP], 2014; White House Fact Sheet, 2014). 
The teaching of CS at the K-12 level seeks to 
provide all students the opportunity to learn 
CSP and develop CT skills deemed necessary 
for success in the technological society (Yadav, 
Hong, & Stephenson, 2016). This attention 
may be in response to the growing demand for 
individuals with computer science-related skills 
and who are prepared to address critical issues 

such as cyber security attacks (Koch & Gorges, 
2016). As such, there is need for a well-prepared 
workforce that can efficiently integrate and apply 
any or a combination of the CSP seven big ideas 
and CT skills in their work places (Mohaghegh & 
McCauley, 2016). The CSP big ideas are creativity, 
abstraction, data, algorithms, programming, 
Internet, and global impact. In addition to the 
seven big ideas underpinning computer science, 
six computational thinking practices typify the 
kinds of activities computer scientists engage 
in, and by extension, must typify the learning 
outcomes of a computer science course. These 
are companions to the seven big ideas. These six 
ideas include the following: analyzing the effects 
of computation, creating computational artifacts, 
using abstractions and models, analyzing problems 
and artifacts, communicating processes and 
results, and working effectively in teams (Synder, 
Astrachabm, Briggs, & Cuny, 2011).

 The Framework for K-12 Science Education and 
the Next Generation Science Standards (NGSS) 
lists CT as one of the eight science and engineering 
practices. These standards emphasize the 
integration of science and engineering practices, 
crosscutting concepts, and core ideas in science 
disciplines in K-12 curricula. Such integration may 
refer to making meaningful connections between 
CSP and CT practices, and the core disciplinary 
practices of each STEM domain, with the goal of 
using this integrated knowledge to solve real-
world problems. Research reveals that integrated 
learning also appeals to educators, because it 
projects real-world experiences, links subject 
areas, and fosters collaboration and networking 
among teachers (Hecht, Russo & Flugman, 2009; 
Siew, Nazir, & Chong, 2015). As such, Integrated 
STEM (i-STEM) education is a relatively recent 
phenomenon, particularly as it is still uncommon 
in K-12 classrooms (Chiu, Price, & Ovrahim, 
2015). Integrated STEM has been viewed as an 
approach to teaching and learning in a manner 
such that the curriculum and content of the four 
individual STEM disciplines seamlessly merge 
into real-world experiences contextually consistent 
with authentic problems and applications in 
STEM careers (Mobley, 2015; Sanders, 2009). 
Synthesizing lessons from schools that integrate 
STEM practices with computer science principles 
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and computational thinking skills may begin to 
tell a story about how teachers plan, instruct, and 
assess CSP and CT in STEM programs. 

Engineering and Technology education programs 
offer curricular flexibility that provides a variety 
of approaches to the infusion of computer science 
fundamentals into a K-12 curriculum. However, 
little information regarding K-12 computer 
science program development and integration into 
STEM areas is available in scholarly literature. 
To this end, two questions guiding this inquiry 
were: (1) How do engineering and technology 
education teachers infuse computer science 
principles (CSP) and CT into engineering and 
technology education? (2) How do engineering 
and technology education teachers assess students 
CSP and CT projects integrated with engineering 
and technology education?

METHOD
The interdisciplinary aspect of i-STEM provides a 
rich test bed to infuse computer science principles 
that enhance CT. Such an approach allows 
numerous ways students at the K-12 level exercise 
critical thinking as they explore the very many 
ways a design challenge may be solved (Curzon, 
Peckham, Taylor, Settle, & Roberts, 2009). As 
such, this study purposefully selected and utilized 
snowball technique (Patton, 2002) to examine 
how four engineering and technology education 
teachers who had attended and completed Project 
Lead the Way (PLTW) summer CS training infused 
CSP and CT practices into their classrooms. The 
epistemology for this research was constructionism, 
the focus being the construction of meaning from 
the perspectives of these four teachers’ beliefs 
and practices within the context of CSP, CT, and 
i-STEM in engineering and technology education. 
Crotty (1998) stated that constructionism is 
the view that all knowledge, and therefore all 
meaningful reality as such, is contingent upon 
human practices, being constructed in and out of 
interaction between human beings and their world 
and developed and transmitted within an essentially 
social context. This inquiry was designed to 
be a multi-site collective case study with each 
participant being viewed as a unit of analysis. 
Participants for this study were four high school 
teachers who were studied individually as cases 
and jointly examined to better understand their 
experiences. The study was limited to high schools 
within a radius of 100 miles from the researcher. 
In addition to driving the long distances to conduct 
interviews and observe teachers’ natural settings, 
a challenge to the study was the frequency with 

which classroom observations were scheduled in 
order to observe students’ working on CS-related 
projects. These teachers taught in the Midwest 
region of the United States and worked with 
approximately 200 students (Grades 9-12). Two of 
the teachers (pseudonyms Alex and John) taught at 
ABC high school, which enrolled approximately 
600 students, with the engineering and technology 
courses being electives and attracting around 80 
students (freshmen through seniors). Alex had three 
years of teaching experience, and John who had 
recently graduated from college was a first-year high 
school teacher. Teacher Cory (pseudonym) taught 
at EFG high school, which enrolled approximately 
700 students, where approximately 70 students 
were pursuing engineering and technology, and 
other career and technical education (CTE) courses 
as electives. He had taught high school for a total 
of 20 years and was a Master PLTW teacher who 
had trained many teachers in PLTW curricula in 
the Midwest region. Teacher Brown (pseudonym) 
taught at MNO high school, which enrolled 
approximately 650 students, and had around 90 
students (9-12 grade students) enrolled in the 
engineering and technology education courses. 
Teacher Brown had taught middle school for 7 
years before transitioning to the high school setting, 
where he had taught for the last 12 years. All four 
teachers had graduated with a bachelor’s degree in 
technology education / engineering and technology 
education. Teacher John also had a computer science 
minor for his undergraduate degree in his teacher 
preparation program.

DATA COLLECTION
A classroom observation coding instrument was 
developed to examine teacher’s practices with students 
during instruction of CSP and CT in an i-STEM 
environment. Specifically, the practices to be observed 
were selected from the Secondary Science Teacher 
Analysis Matrix (STAM) (Gallagher & Parker, 
1995) to code specific behaviors and actions within 
the teacher’s classroom. The rationale for selecting 
the STAM instrument items was that it addressed 
the research questions guiding this study: It guided 
the observation of CSP and CT practices related to 
engineering and technology education focused around 
the integration of STEM concepts. As such, the 
researcher observed and interviewed teachers based 
on the following items: structure of content; examples 
and connections; methods; labs, demonstrations 
and hands-on involvement; kinds of assessments; 
students’ questions; student-initiated activity; students’ 
understanding of teachers expectations; resources 
available, and students’ works.  
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The observational data were collected from 
classroom visits, which included a total of 4-5 
visits that lasted 50 minutes at all three schools. 
The total was 15 visits: teacher Cory was visited 
6 times, Alex and John were visited 3 times each 
(i.e., 6 visits between the two teachers), and 
teacher Brown also was visited 3 times. Face-
to-face interviews with each teacher lasted up to 
50 minutes. As such, a total of 15 lessons were 
observed, and a semi-structured interview with 
open-ended questions was utilized to supplement 
classroom observation data. Berg (2001) stated 
that semi-structured interview guides allowed 
the interviewer to probe far beyond answers 
that might be generated by pre-prepared 
standardized questions. Likewise, Patton (2002) 
posited that open-ended interview questions 
enabled researchers to understand and capture 
participants’ views. The four teachers were then 
invited to participate in a 50-minute interview, 
and all the interviews were audio recorded and 
transcribed verbatim.

DATA ANALYSIS
One of the researcher’s challenges was to obtain 
and verify the true meaning of each participant’s 
responses to the questions asked (Gall, Gall, 
& Borg, 2003). To begin making meaning of 
collected data (i.e., the interview data from the 
four teachers and classroom observations), the 
four interviews were analyzed separately as 
described by Miles and Huberman (1994) during 
data reduction, data display, conclusion drawing, 
and verification phases. The data analysis 
process helped the researcher approach the data 
without preconceptions about teacher’s beliefs 
and practices. During this process the researcher 
reflected on the purpose of the study and the 
guiding research questions as they noted phrases 
and words that revealed each participant’s CS 
teaching practices integrated in engineering and 
technology education with a focus in STEM 
experiences. The researcher then identified text 
segments that contained the same meaning and 
sought to derive in vivo codes from transcripts 
by identifying repetitive, descriptive, and 
interpretive phrases of participants’ experiences, 
which were then developed into categories such 
as programming and pedagogy. Boeije (2009) 
stated that in vivo codes are not just catchy 
words; rather, they pinpoint the meaning of 
a certain experience or event. The researcher 
identified 14 initial in vivo codes in order (i.e., 
computer science, evaluation, information 
science, criticism,  data, pedagogy, computer 

programming, assessment, technology, problem 
solving, design,  teaching, coding, open 
ended). These codes were then compared with 
classroom observation data as a triangulation 
measure to further affirm the initial codes that 
had emerged from the classroom interviews 
into categories and subcategories. Afterward 
the researcher wrote memos describing 
identified categories to further reduce the data. 
Participants’ explanations and ideas that had 
similar meanings were then collapsed into 
key categories informed by subcategories 
identified by reviewing the initial categories 
and participants’ transcripts again. However, it 
should be noted that emergent categories had 
text descriptors in identified subcategories that 
overlapped. At this juncture, the researcher 
then embarked on establishing reliability of 
emerging themes by sharing these initial codes 
and descriptors with study participants for 
member- checking purposes through email 
correspondence for more than a month (Mays 
& Pope, 1995). Mays and Pope (1995) use 
the term “reliability” and claim that it is a 
significant criterion for assessing the value 
of a piece of qualitative research. During 
this process study participants crystallized 
their meanings and reduced the initial codes 
to eight, again in no order of priority to 
computer science, programming, teaching, 
coding, pedagogy, open-ended, evaluation, and 
assessment. The researcher then grouped these 
codes with accompanying text as suggested 
by participants into relevant categories. After 
member checks and reliability testing, the 
researcher proceeded to use Microsoft excel 
to display and organize data for cross-case 
analysis. Miles and Huberman (1994) defined 
cross-case analysis as searching for patterns, 
similarities, and differences across cases with 
similar variables and similar outcome measures. 
The researcher took note of both units to be 
eliminated and those that would be retained. 
Related terms and data with similar expressions 
(e.g., terms like “programming” “coding”) 
that study participants had pointed out during 
member checking to express similar meanings 
were further grouped together into identified 
categories. The researcher then embarked on 
developing themes by grouping identified 
categories that had similar meaning into core 
themes. Table 1 provides the themes identified 
during this stage of analysis; they are termed as 
categories, along with subcategory labels, and 
descriptions as per the participants of this study.
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Categories Subcategories Descriptors

Pedagogy
Interactive

Working together with, and having an influence on learning 
process of students

Learning curve Students’ progress in gaining new knowledge and skills.

Remember Recall an event or an experience from the past.

Work sheets
Paper that teacher shares with student to help them learn similar 
concepts and skills as they progress through a given unit.

Culminating projects
Series of related projects that give students an opportunity to 
demonstrate what they have learned at end of a given unit.

Tutorials
An interactive method of learning that demonstrates concepts/
skills/knowledge you want students to attain.

Standards
Documented specifications that recommend what students 
should know and be able to do at a given grade level.

Unit of learning
Coherent set of concepts that teachers will instruct over a period 
of four to five weeks. 

Backward design
A method of designing a unit of learning by setting an end 
goal you want students to attain before choosing instructional 
methods and forms of assessment.

Scaffolding
Using a variety of instructional techniques to help students learn 
progressively toward attainment of a given end goal.

Programming
Coding / Programming

Writing a set of instructions to execute a desired end goal in a 
computer program.

Scripting languages
A form of communication, as such instructions that computers 
utilize to execute give task to attain a desired goal (e.g., HTML, 
JAVA).

Syntax
Relates to the spelling and grammar of a programming language 
and hence good clean code.

Tool kits
Companion wizard like program that helps students learn a 
given programming language (e.g., Tkinter in Python).

Assessment Criticism Offering value statements to make students’ work better.

Correlation Connecting end result of students work with process.

Understand
Students being able to demonstrate the desired end goal of unit 
of leaning set by teacher. 

Rubrics
Coherent set of criteria that reflect given standards and includes 
descriptions of expected levels of student’s performance.

Evaluation Assigning value statements to students finished assignments.

Documentation
Student’s written thoughts reflecting how they arrived at their 
final solution.

Problem 
solving

Open ended
No specified conditions that hinder the adoption of multiple 
solutions to a design challenge.

Backward design
No specified conditions that hinder the adoption of multiple 
solutions to a design challenge.

Scaffold
Using a variety of strategies to help provide a solution to a 
design challenge.

Planning
Process of thinking about, and organizing a strategy and key 
activities required to solve a given design challenge.

Iterative
Repeating a given procedure in an effort to optimize possible 
solutions to a given design challenge.  

Table1: Categories That Informed Themes Generated by Researcher
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FINDINGS
This study sought to find out how engineering and 
technology education teachers infuse computer 
science principles and computational thinking 
into engineering and technology education, in 
addition to their assessment practices. Quotes 
from the four teachers have been used throughout 
this section to emphasize core themes that 
emerged with no observed priority or order. 
Four core themes (pedagogy, problem solving, 
programming, assessment) were identified from 
the reduced meanings of participants’ verbatim 
transcripts. Verbatim quotes from participants 
were used throughout this section to emphasize 
core themes.

Core Theme Pedagogy
Responses supporting this theme offer insights 
into how teachers scaffold CSP and CT into 
engineering and technology education. Cory 
shared that integration of computer science into 
engineering and technology education courses 
had been facilitated by organizations like code.
org, and the Computer Science Teachers’ 
Association (CSTA) working closely with the 
College Board. He shared that many forms of 
curricula exist that teachers could utilize. For 
example, author please explain abbreviation 
(PLTW) of which teacher Cory was certified 
to teach, and had facilitated professional 
development sessions to prepare other teachers 
integrate CSP and CT in their engineering and 
technology courses. He was of the view that these 
curricula offered a framework that teachers could 
utilize to teach CSP and CT in engineering and 
technology education. In contrast, Alex defined 
scaffolding as a teaching and learning strategy 
by which he helps his students learn how to write 
code and develop programming skills through 
toolkits and worksheets. Brown shared that he 
used a mix of hands-on activities and projects 
to help his students with CSP and CT concepts, 
whereas John viewed the process of teaching 
CSP and CT through design problem solving 
challenges to be synonymous to engineering 
design practices. In visiting the classrooms, 
the researcher was able to observe students 
working on various projects. For example, a data 
visualization project that required students to 
design data collection tools and utilize the tool to 
collect data that they could eventually analyze; 
design of interactive graphical user interface 
(GUI); and raspberry pi projects that looked 
into designing alarm systems controlled by a 
sensor and a camera. These projects required that 

students have some coding background. Cory 
used reflecting practices and recall procedures 
to help students relate their current projects to 
previous learning experiences. For example, he 
stated “ … other languages as one of the common 
widget is a canvas as I have mentioned before 
and we have all encountered that all the way 
back to our very first day in scratch right a big 
canvas that you use again.” In contrast, teacher 
Alex mentioned that this being new to his school 
and teaching, he incorporated a survey to help 
him understand his students’ needs and what 
kind of projects they would enjoy. Especially 
because engineering and technology courses 
were electives, he had to find a balance to grow 
the program. He also mentioned that he would 
give course material that looked into CSP and 
CT upfront so as to give his students background 
information. For example, he mentioned that 
cybersecurity was new to him and to engage his 
students with hands-on activities he shared that, 
“I went to a workshop this summer, I got a lot of 
materials on cybersecurity design challenges, I 
use these materials to guide students [to] make 
their own encryption device of some sort.” 
Brown shared that there were worksheets that he 
accessed from the Internet to help his instruction, 
and John pointed out that he also used worksheets 
in his teaching; he was quick to mention NGSS 
as key factors in his teaching and planning. This 
was a sentiment shared by the other teachers, 
and they recognized the value of standards in 
the planning of their teaching of CS concepts in 
engineering and technology education. One key 
aspect all the teachers shared is that the projects 
they conducted were culminating in nature. As 
such, a given CS unit and designated project 
typically runs approximately four weeks with 
some buffer time built in. He pointed out that his 
teaching of CS including projects was modeled 
around the engineering design cycle.

Core Theme Programming
John noted that the good thing about computer 
science “is that there are a lot of different 
programming languages, and some of them 
are far easier to learn than others.” John who 
had a minor in computer science stated that he 
helps his students learn how to write code by 
asking them to first verbalize what they want 
the code to do. He stated, “before you write any 
code or anything you have to think through the 
problem in your head. So I can give the students 
a problem and then have them explain to me or a 
partner how they would solve it and the write it 



7down step by step.” All the teachers mentioned 
that they infused object- oriented programming 
(OOP) into their engineering and technology 
education courses that enhance STEM learning. 
According to Cory this is when “someone 
combined data and functionality and wrapped it 
inside something called an object.” For example, 
in one class observation, Cory had his students 
program a sphere that could be programmed to 
change location on the canvas, through a toolkit 
called Tkinter in python, one of the many toolkits 
he shared with his students. He began by having 
the students generate code to create the canvas 
and a sphere (i.e., the object). As they did this 
exercise Cory reminded his students about classes 
and objects. As the students worked in the OOP 
environment, classes and objects became the two 
main aspects of object-oriented programming. 
A class creates a new type where objects are 
instances of the class (Corradi & Leonardi, 
2001). Further, teachers, Brown, Cory, Alex, 
and John shared that that they all introduced 
their students to scratch software as an initial 
tool to generate CS and programming interest 
in their students. Scratch (https://scratch.mit.
edu/) is a free programming language developed 
by the Massachusetts Institute of Technology 
(MIT) whereby individuals can program their 
own interactive stories, games, and animations 
and share their creations with others in the 
online community. Cory mentioned that he 
started out with Scratch, and then introduced his 
students to app inventor, an open-source web 
application originally provided by Google, and 
now maintained by MIT, and finally Python, a 
high-level programming language for general-
purpose programming. In contrast, Alex and 
John mentioned that they looked into Python and 
JAVA, while Brown worked with Scratch and 
Python. John noted that Scratch gave students an 
opportunity to see drag and drop functionality 
from a programming perspective. He also added 
that Hypertext Markup Language (HTML) and 
other languages like Cascading Style Sheets 
(CSS) interested his students. According to Alex, 
he emphasized some key terms when teaching 
programming, and asked his students to take note 
of when learning programming included syntax, 
algorithms, good code, and control flow.

Core Theme Problem Solving
All the teachers attested that the essence of 
teaching CS to their students as an alternative way 
to equip them with problem solving skills. They 
all noted that solving a problem in CS resembled 

the process of solving a design challenge in 
engineering and technology education through 
the process of engineering design. Cory shared 
depending on the curriculum being used to 
introduce CS to high school students, sometimes 
the problems that students work on are not open 
ended. He also shared that he works on making 
the challenges his students work on as open-ended 
as possible. Likewise, John agreed and shared 
that the open-ended nature helped him explain the 
process of solving the problem to students using 
a backward design process. He stated, “I set it 
up in like a three step process, using backwards 
design a lot so I would take what objectives I 
want like what I want the students to learn and my 
goals for teaching and hopefully as I instruct, the 
student will be able to make the connection.” Alex 
on the other hand, posited that it was imperative 
for students to learn how to write good code in 
order to successfully solve CS-related challenges. 
He mentioned that good code was clean, easy 
to follow, and would be easy to troubleshoot. 
Teacher Brown suggested that building an opened 
nature perspective into CS problems developed 
creativity in students, as such a key tenet of 
constructionist learning theories where students 
constructed mental representations of possible 
solutions using the engineering design process 
to understand the how possible solutions to a 
given challenge might look like. Constructionism 
advocates student-centered, discovery learning 
whereby students use information they already 
know to acquire more knowledge (Alesandrini 
& Larson, 2002). Students learn through 
participation in project-based learning where 
they make connections between different ideas 
and areas of knowledge facilitated by the teacher 
through coaching rather than using lectures or 
step-by-step guidance. Cory noted that toolkits 
(e.g., TKinster) provided through some of the 
programming languages made realization of a 
solution to a problem become a living object 
through a visual medium. 

Core Theme Assessment
Participants shared that assessment was seen 
to be a challenging aspect of infusing CS into 
engineering and technology education. Alex 
mentioned having criteria was key and aligning 
these to the requirements shared with students 
beforehand. Cory, on the other hand, shared that 
he used rubrics. The PLTW curricula he utilized 
provided rubrics that he could use in evaluating 
students assessments, although he also considered 
other informal measures and asked that students 
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document all their work as they solved each 
presented challenge. For example, he mentioned 
that he considered the functionality of the final 
project and if students were able to adhere to the 
criteria shared. Cory also stated that, “I really 
really want them to learn. I keep on watching 
for the kids who are putting an effort and try to 
learn, the projects are cumulative in a sense and 
how can I give a failing grade if a kid shows me 
growth.” 

John shared that “grading” as such was a 
challenge, in the same vein Alex posited that 
he did not have paper and pencil tests in his 
CS classroom, rather projects. Like Cory, 
Brown also utilized PLTW rubrics to assess his 
students’ completed assignments. For example, 
the PLTW rubric for App design, Scratch game 
or Story assignments had the same eight criteria 
elements and had a grading scale that ranged 
from 4 to 1, with 4 being the highest score and 1 
being the lowest. The criteria elements include: 
solves problem, documentation, collaboration, 
presentation, appropriate algorithm, explanation 
of algorithm, explanation of problem solution, 
and planning. For example, under the criterion 
‘solves problem’ to score a 4, a student’s 
“artifact fully addresses personal, practical, or 
societal intent posed by problem statement,” 
a score of 3 depicted that “artifact addresses 
the personal, practical, or societal intent posed 
by problem statement,” a score of 2 meant 
that “artifact mostly addresses the personal, 
practical, or societal intent posed by problem 
statement”, and a score of 1 meant “artifact does 
not adequately address the personal, practical, 
or societal intent posed by problem statement.” 
As such, the PLTW rubric elements were similar 
to engineering design rubrics (e.g., Asunda & 
Hill 2007; Groves, Abts, & Goldberg, 2014; 
Robelen, 2013; Spurlin, Rajala, & Lavelle, 
2008) that have been used to assess engineering 
design challenges with the exception of 
the criteria “appropriate algorithm” and 
“explanation of algorithm.” These two criteria 
required that students show that the “code 
demonstrates use of appropriate algorithms” 
as well as provide “comments that clearly and 
thoroughly explain the algorithm(s).” The 
engineering design process asks for students to 
show the iteration progression they utilize to 
reach a viable solution and provide evidence 
of optimization of chosen solution, as such a 
similar process to the two criteria “appropriate 
algorithm” and “explanation of algorithm.”

DISCUSSION
Computer scientists, just like engineers, play a 
central role in our technological infrastructure. 
They develop hardware, software and other 
applications for use by the military, businesses, 
and average consumers (Singh, 2016). The 
findings of this study revealed problem solving 
as a key element in infusing CSP and CT into 
STEM-related coursework at the K-12 level. The 
use of problem solving as a strategy to develop 
and impart in students critical thinking skills in 
engineering and technology education programs 
has been reported by several authors (e.g., Eison, 
2010; Pacific Policy Research Center, 2010; 
Ralston & Bays, 2015). Participants of this study 
posited that the procedure their students utilized 
to solve computer science design challenges was 
similar to the engineering design problem solving 
process utilized by engineers and technologists 
to solve everyday challenges that society faces. 
Today, students as young as six and seven are 
learning the logic behind computer programs and, 
in some cases, how to create simple programs 
of their own. Working with age-appropriate 
programming tools like Scratch, App inventor 
etc. and curricula, students can be innovative 
in their solving of given design challenges as 
they explore and experiment with crosscutting 
interdisciplinary skills and knowledge as detailed 
by NGSS (Bers, 2010; Bers & Horn, 2010; 
Grover & Pea, 2013; NGSS, 2013). Programming 
at the K-12 consists of two bodies of theoretical 
work: computational thinking, which 
discourses problem solving with computers; 
and technological literacy and fluency, which 
addresses expressivity with new technologies 
(Barr, Harrison, & Conery, 2011; Grover & 
Pea, 2013; Guzdial, 2008; Lee et al., 2011; 
Next Generation Science Standards [NGSS], 
2013; Wing 2008). Utilizing problem solving 
strategies to innovatively design and program 
computational artifacts can facilitate students’ 
engagement in high-level cognitive processes 
such as divergent thinking, and reflective practice 
(Resnick, 2007). As such, the findings of this 
study report that programming as a vehicle to 
develop computational thinking practices may 
lead to the realization of viable solutions to given 
design challenges. 

With regards to core themes pedagogy and 
assessment, Magana, Brophy, and Bodner, (2012) 
investigated aspects of teaching and learning 
for integrating CS modeling and simulation 
practices in STEM coursework. Aspects of 



9teaching relate to the identification of intended 
learning outcomes instructors would like to 
accomplish when integrating computational 
tools into their disciplinary courses. On the other 
hand, learning aspects for integrating modeling 
and simulation practices have centered on the 
reasoning processes afforded by computational 
tools (Magana et al., 2017), as well as scaffolding 
strategies that can overcome possible cognitive 
overload (Vieira, Magana, Falk, & Garcia, 
2017; Vieira, Magana, Roy, Falk, & Reese, 
2016).  Aspects of teaching and learning inform 
assessment practices, as well as pedagogical 
strategies that include hands-on, real-world 
projects. Such is a vehicle for the integration of 
CS practices and STEM coursework, as a result 
helping students develop useful skills and take 
what they learn in the classroom and apply it to 
everyday life. Thus, project- and problem-based 
challenges and learning through modeling and 
simulation practices engage students in rigorous 
and relevant learning experiences that may 
generate their enthusiasm as well as impart in 
them CSP and CT skills and knowledge. On the 
other hand, assessments that teachers utilize are 
processes used to examine students’ assignments 
with the aspects of teaching and learning that 
the teacher has identified as appropriate for a 
given learning segment. In essence, assessment 
practices that these teachers utilized helped them 
gauge the development of CSP and CT skills by 
using design challenges as a vehicle to support 
the learning of crosscutting concepts in i-STEM 
environments. 

CONCLUSION
In conclusion, the findings of this study suggest 
that i-STEM opens a range of possibilities by 
which teachers at the K-12 level may utilize to 
further develop in 21st century students skills 
that become future workforce requirements to 
be competitive at the workplace. Infusion of 
CSP and CT into STEM-related course work 
engages students in applied learning as they 
solve design challenges through a variety of 
crosscutting concepts. Such a process is similar to 
the engineering design process that exemplifies a 
process of steps that are developmental, structured, 
and iterative in solving design problems, building 
prototypes, and testing solutions. As such students 
are exposed to critical skills in problem solving, 
teamwork, time management, communication, 
and leadership strategies. Such an approach may 
ensure college and career readiness for the STEM-
enabled 21st century careers.

LIMITATIONS AND 
RECOMMENDATIONS
FOR FUTURE RESEARCH
As with all educational research, there 
are limitations to this study that must be 
addressed. The infusion of CS into STEM-
related courses through engineering and 
technology education is an emerging area 
of work. As such, there is limited literature 
with regards to how teachers integrated their 
teaching as well as assessment process. NGSS 
standards are a recent introduction to the K-12 
arena, and teachers are still learning how to 
incorporate them into already existing state 
standards for instructional planning purposes. 
Besides, states are still grappling with where 
CS fits in the K-12 curricula, and there is 
a need for qualified teachers. First, a small 
number of participants within a radius of 100 
miles were purposefully chosen for this study, 
limiting the ability to utilize sophisticated 
statistical methodologies and examine how 
engineering and technology education teachers 
infuse CSP and CT into engineering and 
technology education. Second, assessment 
strategies were varied and it was difficult to 
comprehend and relate how participants of this 
study may have integrated NGSS suggestions 
into assessing students’ CS integrated STEM 
assignments and projects. It was noted 
that participants’ utilized rubrics and that 
choice may not clearly highlight the role of 
performance assessment as highlighted in the 
NGSS. Although there is much that remains 
to be done toward integration of CS into K-12 
teaching, caution must be used in generalizing 
findings of this study to larger populations. 
Future research studies would benefit from 
the use of a larger sample. Third, investigate 
assessment practices that clearly articulate 
and align CS to performance assessment, 
and lastly computer science departments 
and STEM educators should continue to 
collaborate and develop CS coursework that 
can be integrated into teacher education course 
work concepts and pedagogical knowledge 
practices.

Paul A. Asunda is an Assistant Professor 
of Engineering and Technology Teacher 
Education in the Department of Technology, 
Leadership, and Innovation at Purdue 
University, West Lafayette, IN.  He is a 
member of the Gamma Rho Chapter of 
Epsilon Pi Tau.
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