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Abstract
The personal computer has become the primary research tool in many scientific and engineering 
disciplines. The role of the computer has been extended to be an experimental and modelling tool 
both for convenience and sometimes necessity. In this paper some of the relationships between 
real models and virtual models, i.e. models that exist only as programs and data structures, are 
explored. It is argued that the shift from experimenting with real objects to experimentation with 
computer  models  and  simulations  may also  require  a  new approach  for  evaluating  scientific 
theories  derived  from  these  models.  Accepting  the  additional  sets  of  assumptions  that  are 
associated with computer models and simulations requires ‘leaps of faith’, which we may not 
want to make in order to preserve scientific rigor. There are problems in providing acceptable 
arguments  and  explanations  as  to  why a  particular  computer  model  or  simulation should  be 
judged scientifically sound, plausible, or even probable. These problems not only emerge from 
models that are particularly complex, but also in models that suffer from being too simplistic. 

Introduction

In a recent volume by De Chadarevian and Hopwood (2004) a number of authors present some of 
their  views  on  3-dimensional  models  and  the  role  such  models  play  in  science  from  a 
historiographical perspective. The various models discussed have in common that they are mostly 
material things, i.e. models made of clay, wood, plasticine and the like. In the last few decades 
computers have revolutionized scientific modelling, and the notion of  model has changed. The 
use of ‘computer models’ does not just add another kind of model to the array of ‘traditional’ 
artifacts.  In  some disciplines  computers  have become  the modelling  tool,  rather  than  merely 
playing a supplementary role. Indeed, in the field of Cognitive Science the computer model is the 
‘traditional’ model, given the underlying computational theory of mind. Not only are many of the 
characteristics of computer models and simulations entirely different from material models, but 
the way we interact with models changes as a consequence.

Now, there are no longer real objects to probe, to measure or to collect, and all of our activities 
target mere  representations of the world, i.e. mathematical abstractions, and computations with 
these representations (symbols). Moreover, a new layer of ‘virtual reality’ is often created with 
the aid of various visualization techniques. Experimentation with such models in an interactive 
and ‘interfering’ way that Hacking (1983) and Harré (1970) ask for is not possible. Instead, the 
experiments are conducted in the domain of the virtual  and the computational paradigm. Yet 
computer models are sometimes deemed to be real world objects in the same way the objects that 
are modelled are real world objects. 

Not long ago, the concept of simulation “invariably implied deceit” (Keller, 2003). I think that 
this sentiment also applied to the term model, albeit to a lesser degree. Simulations and models 
were thought of as merely mimicking, or faking, the real world. While modelling has become a 
widely used technique in almost any imaginable discipline, the term is still often associated with 
a certain amount of incredulity, or, skepticism. For every model that shows A, there seems to be 
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always  an  alternative  model  showing  B,  and  it  is  significant  that  we  quite  often  hear  the 
expression ‘it is only a model’. In contrast, the term model is also used to denote standards and 
even perfection:  the  model husband (Jordanova,  2004).  Expressions  like ‘virtual  models’  and 
‘virtual  experiments’  might  be  preferable,  because  the  term  virtual,  and  in  particular  virtual  
reality, seem more positive and are usually associated with cutting edge computing and Artificial 
Intelligence (AI). 

The arrival of modern computing machinery in the 1950s and the proliferation of inexpensive and 
very  powerful  PCs  since  have  led  to  a  revolution  in  terms  of  what  kinds  of  models  and 
simulations can be implemented. Computer models and simulations make use of many advanced 
techniques that introduce new, often exciting, ways to present aspects of models to scientists, 
science communicators and ‘consumers’ of science alike. Computer generated images (CGI) not 
only changed the  way we think about  pictures  and movies,  but  also  about  how theories  are 
formed. New and innovative methods have been devised to present data in both scientific and 
non-scientific contexts. There is a variety of powerful methods for visualization and presentation 
available, and many applications of these techniques have made their  way into textbooks and 
journals  in  the  form  of  illustrations  and  graphical  representations.  With  advanced  image 
processing  techniques,  it  is  not  only possible  to  alter  and to  enhance  pictures,  but  it  is  also 
possible to render images of phenomena that are not visible, or may not exist at all. Many of the 
computer  aided  experiments  and  visualizations  may  be  helpful  in  understanding  complex 
phenomena because “visualizations contribute to ‘amplify cognition‘” (Araya, 2003). However, 
due to some reservations about the validity of computer simulations as experiments and methods 
to gain ‘scientific knowledge’,  it  seems that virtual models  introduce a different set  of issues 
concerning scientific rigor. Accepting virtual models and virtual simulations as experimental or 
empirical tools in science, will force us to adopt some new form of ‘virtual scientific method’.

Building Models

During  the  process  of  building  a  computer  model  or  simulation,  several  transformations,  or 
translations,  take  place.  In  the  first  instance  there  is  a  transformation  of  the  (sometimes) 
observable  phenomena  or  theoretical  entities  and  the  relationships  between  them  into  their 
corresponding mathematical entities. The result is a mathematical model that has been described 
as an intellectual construct, or, a mathematical object (Jorion, 1999). Then there is a translation of 
the  mathematical  structures  into  computational  entities  that  are  designed  to  deal  with  the 
complexities  of  the  calculations  in  an  appropriate,  effective  and  efficient  manner.  The  third 
transformation takes place when the data, which has been generated or transformed by models, is 
translated  into a  format  that  is  more  easily interpretable  by the experimenter.  In models  and 
simulations,  where  large  amounts  of  data  are  involved,  additional  steps  are  usually taken to 
present the data in some sort of visual form. The final transformation occurs when the model is 
reinterpreted in the language of the initial problem, question or theory. 

Mathematical Models
A mathematical model is an intellectual construct that is based on a mathematical object, which 
“does not tell anything about the world” (Jorion, 1999). Jorion believes that mathematical objects, 
without sensible interpretation, are all about syntax, and any of their meaning derives entirely 
from its structure. The inherent meaning held by a mathematical object is that 
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[…]  some  of  the  symbols  which  constitute  [the  mathematical  object]  impose 
constraints on others, some have no more meaning than the set of constraints they are 
submitted to (Jorion, 1999, 2). 

This view of a  symbol is comparable with that of a representational system (RS) of ‘Type 1’ 
suggested by Dretske, who says about these kinds of RSs that they are “doubly conventional: we 
give them a job to do, and then  we do it for them” (Dretske, 1988). However, a mathematical 
model  becomes more  than just  a collection of meaningless  symbols,  provided that  a  sensible 
interpretation is possible. Jorion goes as far as to say that the mathematical model and the part of 
the world that is modelled are isomorphic, provided that the interpreted model is meaningful, i.e. 
the model “makes sense”. 

The benefits of a mathematical model for world comprehension are the following: if 
an interpreted mathematical model makes sense, then it is reasonable to assume that 
the type of relations which hold between the symbols in the model hold also between 
the bits of the real  world which are represented in the interpretation of the model 
(Jorion, 1999, 3). 

The analysis of many models, in terms of initial assumptions and the claims made later, reveals 
that there are many different opinions on what “makes sense”. Artificial neurons, for example, 
have very little in common with real neurons:  they differ  in their  external  functionality,  their 
behavior, and their architecture. Other than a gross similarity in that they transform (integrate) 
several  inputs to one output,  they really share only the name.  The isomorphism of biological 
neurons and mathematical neurons can barely be described as an ‘approxi-morphism’, let alone as 
an ‘isomorphism’, but the question of whether it “makes sense” to employ simplistic artificial 
neurons in cognitive models or not, is certainly not asked often enough. Psillos (1999) refers to 
‘modelling assumptions’ that reflect the relationship between the model and the target physical 
system. He thinks that 

[f]ar from being arbitrary, the choice of modelling assumptions for [the target system] 
X is guided by  substantive similarities between the target system X and some other 
physical system Y. It is in the light of these similarities that Y is chosen to give rise to 
a model M of X (Psillos, 1999, 140). 

I believe that these “substantive similarities” also capture the nature of the relationships between 
the mathematical  description (model)  and a theoretical  entity, provided certain  conditions  are 
met. Some of these conditions are discussed later. 

How do we derive a mathematical description of some relationship among physical (or mental) 
entities?  There are several conceptual transformations and processes involved. In the following 
paragraphs I discuss some of the issues concerning  abstraction,  formalization,  generalization, 
and  simplification,  because  these  operations  should  be  considered  fundamental  steps  in  the 
process of building (or constructing) mathematical models.

Abstraction

Mathematical models refine the real world by introducing an element of abstraction. It is clear 
that a model should be simpler than that which is to be modelled. The process of abstraction 
involves  several  practices,  all  of  which  widen  the  gap  between  the  sometimes  observable 
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phenomena  and  an  idealized  description  in  mathematical  terminology.  Stufflebeam  (1998) 
suggested that his cat  Sophie’s behavior,  when dropped from two feet,  “satisfies the distance 
function  D(t)=½gt2 “. The abstraction here includes the reduction of the cat Sophie to a point 
mass in Newtonian physics. The observable behavior of the cat Sophie in free fall differs from the 
idealized point mass. In fact, Stuffelbeam’s description of Sophie’s behavior as D(t)=½gt2 does 
not involve Sophie at all. Abstraction is the process of defining a general and idealized case for 
relationships  between  entities  and  processes.  In  the  distance  formula,  g stands  for  the 
acceleration, and if we substitute the values for g of 9.8 m/s2 or 32 ft/s2 then we get a reasonable 
approximation of the conditions on Earth. However, we can also find the appropriate values for 
this model to work on the moon or on Mars. The distance formula holds anywhere for any object, 
provided we have the correct value for g. The most important aspect here is the introduction of 
placeholders like D(t), which is the abstract notion of ‘the distance of something at a particular 
moment in time’. This placeholder, or symbol, can now be manipulated within a formal system, 
like mathematics in this case. The introduction of symbols may put constraints on the type of 
operations and the methods for the model. For example, a sigmoid squashing function is selected 
in neuron models (perceptrons), because (1) the function’s behavior is close to that of the step 
function at some level and (2) the function is differentiable at every point. While the qualities of 
the  step  function  are  desirable  for  the  implementation  of  a  neuron’s  functionality,  some 
mathematical  procedures  (the  back propagation  of  error  algorithms  for  learning  in  this  case) 
require that this function is differentiable everywhere. The point is that the mathematical methods 
that make up the model, or play an essential part in the model, are likely to dictate the kind of 
mathematical structures of the model at some level. 

Formalization

The  second  and  usually  difficult  process  in  building  a  mathematical  model  is  that  of 
formalization.  A mathematical  description of  entities  and the  relationships  that  hold  between 
them can only work as a useful  model  if  there is a sufficient  precision of terms.  In areas of 
elementary  Physics,  like  Newtonian  dynamics,  models  work  well  because  terms  like  mass, 
velocity and force and the interaction between these concepts are defined within a formal system, 
based on axioms. This is not the case in other scientific endeavors. The difficulty in Cognitive 
Science,  for  example,  is  that  many terms describe  mental  things,  like  beliefs,  behaviors  and 
linguistic concepts, rather than physical things with properties that can be described and defined 
easily. Moreover, for mental concepts, we do not have clearly defined relations or processes to 
manipulate  such  concepts.  Green  (2001)  suggests  that  some  of  the  apparent  success  of 
connectionist  models  is  due  the  lack  of  precision  of  terms  (vagueness)  and  insufficient 
explanations of what it is that is actually modelled. The question is whether beliefs or behaviors 
can be modelled successfully, if it is not possible to provide a formal description of what we want 
to model. However, formal representations of a belief, for example, are needed in a computer 
program, because we need some way of encoding this concept. I suspect that formal descriptions 
of mental events, if it is at all possible to produce such descriptions, will not be in terms of simple 
placeholders.  They will  have  to  be  either  simple  and  relatively vague,  or  they will  be  very 
complex in order to provide some exactness and precision. But there is a catch: on the one hand 
there  has  to  be  sufficient  precision  to  build  a  good  model,  on  the  other  hand,  precision  in 
terminology and in detail  makes  it  harder  to  build  models  that  remain  simple.  Formalization 
ought  to  eliminate  many  of  the  ‘soft’  assumptions  and  descriptions  about  mental  concepts. 
However,  mental  concepts  are  not  easily defined or described in formal  terms. For example, 
experience with the representation of knowledge in many applications in the field of AI have 
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shown, that it is very difficult to encode ‘facts’ and the associated rules. In these situations we 
have to face the additional problem of also having to encode the subjective degree of belief and 
quite likely fuzzy representations about what is believed. It is clear that we cannot choose suitable 
sets of symbols,  sets of rules of inference and transformation rules for mental concepts in the 
same way we can choose D(t). 

Generalization

For some models it is desired that they work well for a theory about something “in principle”, 
rather than to target a particular instance of the theory in question. In other words, the model has 
to be able to produce data, if the model is designed to predict some cognitive behavior in humans, 
for humans, rather than the behavior of Lucy or  Bob. There is, of course, the added problem of 
validating the model. In order to measure the success of the model, we need to compare data from 
the model with real data. The real data in this case has to be statistical data, because averaging 
data  from many individuals  can provide  us  only with  generic  human data.  Generalization  is 
usually achieved by omitting detail and allowing for a very broad interpretation of results. The 
danger here is to make models so general that they no longer capture the complexity of the theory 
or issue to be modelled (Krebs, 2005; Krebs, 2007). For example, the general formula for falling 
objects (e.g. cats) based on simple Newtonian physics is not a sufficiently precise model for what 
happens to a parachute jumper in free fall. For the latter much more specific case, it is important 
that drag and terminal velocity are considered in the model. 

Simplification

One of the many criteria defining what makes a ‘good’ model is that the model is easier to work 
with.  One  way  of  making  models  easier  is  to  simplify  things,  which  can  be  achieved  by 
disregarding details or external (environmental) issues that influence the model. For Sophie, the 
distance traveled by a free falling object  on earth can be modelled  using D(t)=½gt2+v0+D0 
where g is the acceleration of about 10 ms2, and v0 is the vertical velocity at the beginning of the 
time interval t. D(t) gives us the distance after the time t from the position D0, the position of the 
object at the beginning of the time interval. This is an ‘easy to work with’ model, because we do 
not take into account, among many other things, that (1) the acceleration is only approximately 
10  ms2,  and (2)  the  atmosphere causes  drag.  Even when taking drag into  consideration,  the 
mathematical  model  of  Sophie’s  behavior  is  still  crude,  because  we have not  considered the 
Reynolds numbers, the variation of the gravitational force over geographical regions, and many 
other perturbations. If we take drag into consideration we need to know that drag itself depends 
on, among other things, (1) the shape of the object and (2) air density. But, the density of the air 
is  dependent  on the temperature  and the humidity,  and the Reynolds  numbers depend on the 
velocity of the object (cat), its shape and size, its surface, and so on. In the case of Sophie, the 
problem can  not  be  fully  described,  because  the  cat  could  and  would  change  its  shape  and 
therefore many parameters during the free fall. 

At some point the model  will  become so complicated that it  is no longer easy to work with, 
because the model is more difficult to understand than the original problem. D(t)=½gt2+v0+D0 
is  likely to be sufficient as a model  for most  ‘dropping cat problems’.  I  consider the task of 
simplification to determine what must be included in the model, and what kind of detail can be 
omitted, the most difficult challenge. As computers become more powerful, the computational 
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complexity of models can be increased, which in turn, as one would expect, will increase the 
quality and power of the models. But this is not necessarily the case. A very complex model is no 
longer easy to use, and an increased complexity can also be an indication that the model needed 
many additions to explain or produce acceptable predictions. In the same way Tycho Brahe’s 
model  of  the  universe  needed more and more epicycles  to ‘keep up’ with  the data  that  was 
gleaned from actual observations. It might turn out that the model is just not good enough to 
explain things adequately.

Experiments

It  has  been  suggested  by  some  Philosophers  of  Science,  e.g.  Harré  and  Hacking,  that 
experimentation is not merely about the observation of phenomena and subsequent inferences to 
the explanatory theories. Instead, experimentation is also about observing and interfering with the 
objects in question (Hacking, 1983). The ability to manipulate objects is an essential and integral 
part  of  the  process  of  experimentation,  which  is  “to  create,  produce,  refine,  and  stabilize 
phenomena” (Hacking, 1983). The close connection between the experiment, a material model 
and the real world is also a key requirement in a definition of the term  experiment offered by 
Harré, who says that 

[a]n experiment is the manipulation of [an] apparatus, which is an arrangement of 
material stuff integrated into the material world in a number of different ways (Harré, 
2003, 19). 

Harré suggests that the experimental  setup (apparatus)  is either an instrument  that can tell  us 
something about the world due to the causal relationships between the setup and the ‘states of the 
world’, or it is a “domesticated version of the systems in the world”(Harré, 2003, 26). 

The kinds of  experiments  that  fit  the criteria suggested here are  associated by some, naïvely 
perhaps, with what  actually happens in a laboratory.  These are the kinds of experiments that 
remind us of our high school days. However, it has become obvious that the vast majority of 
experiments  are  different  from  this  stereotypic  view  (Morgan,  2003).  When  we  conduct 
experiments  with  computational  models  and  simulations,  there  are  no  materials  that  could 
possibly be  manipulated.  The  material,  the  apparatus  and  the  process  of  interference  are  all 
replaced  by  data  structures  and  computational  processes.  The  nature  of  the  entities  and  the 
phenomena that are the points of interest in the field of Cognitive Science, for example, dictates 
that models and simulations are often the only way to do any experimentation at all. In Cognitive 
Science, the experiment is moved into the realm of the virtual, not just for convenience, but more 
often than not, out of necessity.

Virtual Experiments
Elements of computation can be part of a causal chain. Imagine an experimental setup where 
micro-electrodes are used to measure some voltage changes in a living cell in response to some 
stimulus introduced with another set of micro-electrodes. Instead of using a voltmeter that is built 
around a mechanism involving a coil, a magnet and a pointer with a dial, the voltage is displayed 
on a computer screen. The voltage differential at the electrodes is converted into a digital signal 
so  that  a  particular  voltage is  represented (encoded)  as  a binary bit  pattern.  This  data  is  fed 
through one of the computer’s input/output channels, and a program performs the task to convert 
and display the data as a series of figures, i.e. numbers, on the screen. There are, in principle at 
least,  no  difficulties  in  explaining  the  causal  chain  between  the  number  on  the  screen  and 
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electrical potential at the micro electrodes. The numbers on the screen are elements of a Type II 
RS in the Dretskian theory. RSs of Type II are grounded in the real world in that their power to 
indicate is linked to causal events in the real world. Linking meaning to causal events has also 
been suggested by Russell, who defines “causal lines” as 

[…] a temporal series of events so related that, given some of them, something can be 
inferred  about  others  whatever  may  be  happening  elsewhere.  A  causal  line  may 
always be regarded as the persistence of something - a person, a table, a photon, or 
what  not.  Throughout  a  given  casual  line,  there  may  be  consistency  of  quality, 
consistency of structure, or gradual change in either, but no sudden change of any 
considerable  magnitude.  I  should  consider  the  process  from speaker  to  listener  in 
broadcasting one causal line: here the beginning and the end are similar in quality as 
well as structure, but the intermediate links - sound waves, electromagnetic waves, 
and physiological processes - have only a resemblance of structure to each other and 
to the initial and final terms of the series (Russell, 1948, 477). 

The meaning (i.e. our interpretation of the semantic content) is not bound to the real world in the 
same way. The power to indicate something about the real world has to be recognized by the 
observer of the sign. Scientific instruments, thermometers, or voltmeters, indicate temperature, 
electric potential and similar properties and phenomena. They function by exploiting (detecting) a 
known physical phenomenon. Instruments provide the observer with a representation of the state 
or relation of that phenomenon through a series of often complex transformations. For example, it 
is a property of the real world that the volume of a quantity of metal varies with temperature. A 
suitable arrangement of levers and a pointer on a dial can be used to exploit  the relationship 
between temperature and volume to create an instrument that will indicate the temperature with 
some  accuracy.  There  is  a  distinction  between  what  the  instrument  indicates  and  what  the 
observer  believes  that  indication  means.  The  pointer  on the  dial  will  only be  meaningful  to 
someone who knows that this instrument is indeed a thermometer. The instrument will  indicate 
the temperature  quite independently from the observer.  To be an indicator of some particular 
property of the real world, the causal relationships must be maintained and the observer must 
attach the right kind of interpretation in terms of the indicator’s meaning. Dretske explains that 

[i]f a fuel gauge is broken (stuck, say, at “half full”), it never indicates anything about 
the gasoline in the tank. Even if the tank is half full, and even if the driver, unaware of 
the broken gauge, comes to believe (correctly, as it turns out) that the tank is half full, 
the reading is not a sign - does not mean or indicate - that the tank is half full. Broken 
clocks are never right, not even twice a day, if being right requires them to indicate 
the correct time of day (Dretske, 1988, 308). 

In the suggested example, i.e the computer indicating voltages and the like, the computer is an 
integral component of the experimental setup, but the computer is not implementing a  virtual 
model.  Consider  the  following  changes  to  the  experiment.  The  computer  program  is  now 
modified to read the pattern and to display the corresponding number every second, and as an 
additional  feature,  the program records  the time and the  values  from micro-electrodes  in  the 
machine’s memory. The information in the memory can also be replayed so that the sequence of 
numbers is displayed on the computer screen in one second intervals. Essentially the computer is 
now  simulating the  original  experiment  by re-playing  what  happened earlier.  Is  there  now a 
problem in causally linking the patterns in memory to the micro electrodes?  I suggest that there 
is not. There is only a time delay that has no bearing on the ‘causal chain’, because the data for 
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the simulation has been obtained by means that is (was) in principle ‘causally’ traceable. The 
experiment continues and a mathematically minded researcher recognizes that a pattern seems 
inherent in the data. She pushes the data through her favorite statistics program on her computer 
and finds a very good fit of the data for some function  f(x). Because of the difficulties when 
dealing with living neurons in these kinds of experiments, it is decided to build a model of the 
neuron’s function based on f(x). The neuron and all micro-electrodes are dispensed with, and the 
stimulus is now generated within the computer model varying the values for x in the domain of f, 
and the  corresponding values  f(x)  is  displayed  on the  screen.  Obviously, we can now easily 
produce many more data points to fill any gaps. The data that comes out of the model is different 
in terms of its origin and therefore also different in terms of what conclusions we can draw about 
f. 

While the causal connections of some symbol  could be traced, at least in principle, the  actual 
connection to the real world is merely assumed. This assumption, because it is at least in principle 
traceable, maintains or promotes the symbol  to an element of a Type II RS. The relationship 
between the real world and representations of the world is of great importance in the context of 
models  and simulations. The value of a model  as a representation of the real  world and any 
insights into the working of the world by investigating properties of the model depends on the 
kind of representations the model employs. A meaningless representation, in the sense that it can 
represent arbitrarily anything, can and will render the entire model meaningless, unless there is a 
syntactically correct procedure (probably a causal chain) to tie these representations down. We 
can  accept  that  some  mathematical  constructs  and  computer  programs  produce  useful  data 
(predictions) or that they perform suitably in the context of a particular problem, without having 
any  similarities  to  the  entities  and  relations  of  the  problem  at  hand.  However  not  all  such 
‘models’ may be able to offer any explanations or insights in another domain. For example, some 
computer programs, which may be designed to follow principles from the field of AI, perform the 
task of reading aloud some arbitrary text surprisingly well. However, these programs do not offer 
anything in terms of how a human being performs the same task - these programs are faking it, 
even if Artificial Neural Nets are involved (Krebs, 2005). 

A model, or representational system, that is to function as a representation of the real world ought 
not to contain any Type I elements. In addition, representations of Type II, by definition, must not 
have gaps or uncertainties in the causal chain linking them to the real world. A thermometer is 
only a thermometer if it has the power to indicate the temperature. Some apparatus may well 
indicate the temperature provided certain other conditions are given. An example will illustrate 
this point. Imagine a partially inflated balloon that is connected to a pressure gauge. The volume 
of air and the air pressure inside the balloon will change with the ambient temperature and the 
ambient air pressure. This setup will function as a thermometer, if the ambient air pressure is kept 
constant. However, if the temperature is kept constant and the ambient pressure is allowed to 
vary, then the instrument will indicate pressure. This simple instrument has the power to indicate 
either temperature or pressure, that is, the setup can function as a thermometer or a barometer. A 
scientific, or a merely usable, instrument would have to be engineered so that the relationships 
between pressure, temperature and volume are exploited. But the power to indicate one or the 
other must be constrained through appropriate means to guarantee an indication of either only 
pressure or only temperature. 

Type II representational systems contain natural signs that are objectively connected to the real 
world and their power to indicate something about that world is exploited by using their natural 
meaning (Dretske, 1988), because 
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[i]n systems of Type II, natural signs take the place of symbols as the representational 
elements. A sign is given the job of doing what it (suitably deployed) can already do 
(Dretske, 1988, 310). 

It is important to note that there is no intentionality associated with this type of representation. 
However, the potential intentionality (the meaningful interpretation) is constrained by the causal 
links to the real world. The variation in volume of metal, for example, may be due to the change 
of temperature, but this variation in volume cannot be reasonably attributed to the colour of the 
paper it is wrapped in. 

Computer models and computer simulations have become tools for science in many ways. AI and 
Computational Neuroscience are special cases among the ‘hard’ sciences in that computation is 
the  very  nature  of  their  activities.  Other  sciences  might  employ  computational  models  and 
simulations as tools, however chemistry, for example, is essentially about elements, molecules, 
compounds, plastics or pharmaceuticals,  even if computational models  and simulations play a 
role in chemical research. AI, in contrast, takes computational models to simulate, even replicate, 
cognitive functions that are  computational themselves. This would certainly be the case if the 
assumption  that  cognition  is computation  is  true.  If  it  turns  out  that  cognition  is  merely 
computable, then AI would still be entirely about computation, but the contributions to Cognitive 
Science would need additional justification. 

Three distinct types of models have been identified where, (1) computers are used to deal with 
theories and mathematical  abstractions, which would otherwise be computationally intractable, 
(2) computers provide responses (data) in ‘what-if’ simulations, i.e. the behavior of a real world 
physical system is simulated according to some theory, and (3) computers simulate the behavior 
of non-existing entities, for example the simulation of artificial life (Keller, 2003). 

The role of computational models and ‘virtual experiments’, i.e. simulations, as contributors in 
the  framework  of  empirical  science  are  of  particular  importance.  This  holds  especially  for 
Cognitive  Science  because  many  of  the  objects  of  inquiry  in  Cognitive  Science  cannot  be 
observed directly or mediated by scientific instruments. Consequently, models and simulations 
are often the only method available to the scientist. It has been argued that computer simulations 
are essentially extensions of numerical methods, which have been part of scientific reasoning for 
a long time (Keller,  2003;  Gooding,  2003).  Human beings do not  reliably maintain  accuracy 
when they have to deal with a large quantity of numbers, and digital machines are much more 
efficient at doing logical and numerical calculations. The recognition of patterns and structures is 
much more the domain of human beings. The work of analysis and interpretation of patterns, 
whether these are observed directly or whether these are produced by a machine, remains largely 
the task of the scientist. Ziman (2000) suggests that what can be known to science is restricted to 
what is known to scientists,  when he says that “[a]n empirical scientific fact  originates in an 
observation - an act of human perception”(Ziman, 2000, 102). 

Experiments that are conducted in a virtual and computational environment often do not allow 
access to the object of inquiry. The question, whether evidence from virtual experiments qualifies 
as  empirical,  is  still  debated.  One  of  the  issues  within  this  debate  concerns  the  relationship 
between behavioral models and simulated or virtual objects on one hand, and real world behavior 
and the real world objects on the other. Are these virtual entities  representations of or are they 
representative for the real world object?  
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Computer Models as Scientific Experiments

Models  representing  theories  (conceptual models)  and  models  representing  real  entities 
(representational models)  must be accommodated within the framework of scientific practice. 
The conceptual model is the kind of model that has been associated with the terms metaphor and 
analogy by Bailer-Jones (2002). The general claim is that all models are metaphors. In this view, 
models are 

an  interpretative  description  of  a  phenomenon  that  facilitates  access  to  that 
phenomenon. […] This access can be perceptual as well as intellectual. […] Models 
can range from being objects, such as a toy aeroplane, to being theoretical, abstract 
entities, such as the Standard Model of the structure of matter and its particles (Bailer-
Jones, 2002, 108). 

Some models can be an adequate representation of real entities provided that there is sufficient 
accuracy with  which  a  model  represents  the  real  world.  Sufficient  accuracy is  not  a  clearly 
definable term. What is ‘sufficient’ is essentially a matter of one’s subjective stance toward the 
question what science is and how it operates. Psillos, defending the position of scientific realism, 
says that 

taking a  realist  attitude  toward  a  particular  model  is  a  matter  of  having evidence 
warranting the belief that this model gives an accurate representation of an otherwise 
unknown physical system in all, or in most, causally relevant respects (Psillos, 1999, 
144). 

We can consider and may even be able to defend the view that models in science go beyond being 
‘interpretative  descriptions’  and  that  they  are  scientific  truths  instead.  Psillos  hints  that  the 
adequacy of a model as a representation can only be determined on a case by case analysis, when 
he  refers  to  the  realist  attitude  toward  a  particular model.  We will  have  to  accept  that  the 
judgment whether a model or a simulation, or any experiment with such a model, is grounded in 
some scientific method, will also have to be made on a case by case basis. I have already shown 
that there are no rules for building models, and that the process of building models is largely 
based on assumptions about what the relevant factors are, how things can be simplified, how we 
write a program, and so on. The question of whether virtual simulations and virtual models are 
valid tools for a scientific endeavor is even more problematic. Ziman, who argues for a normative 
view of science, comments that 

[m]ost people who have thought about this all are aware that the notion of an all-
conquering intellectual ‘method’  is just a legend. This legend has been shot full of 
holes, but they do not know how it can be repaired or replaced. They are full of doubt 
about past certainties, but full of uncertainty about what they ought now to believe 
(Ziman, 2000, 2). 

I believe that thoughts by Popper (1959) on how science should operate are still  normatively 
useful. Theories should be formulated such that they are testable, and neither magical ingredients 
nor magical methods should be allowed as part of the supporting evidence. This, of course, must 
also apply to any counter examples and counter arguments. The application of models is a part of 
the empirical  process.  Helping to flesh out  the details  of some theory or to formulate a new 
hypothesis using models and simulations is also part of a scientific framework (Popper, 1959, 
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106). The epistemological role of simulations and models in science in terms of the development 
of theories is closely linked to questions about scientific theories in general (Peschl and Scheutz, 
2001). Nevertheless, I believe that models and simulations are scientific tools, provided ‘good 
scientific  practice’,  whatever  that  may  entail,  is  applied.  Claims  for  a  particular  model  or 
simulation  should  be  judged as  an adequate  representation,  and as  an adequate,  i.e.  suitable, 
model, need to be examined in each case. We need to check that each part and process of a model 
can be mapped onto the corresponding part of the real world object or process that is modelled. In 
the  case  of  a  computer  model,  the  elements  and  links  in  the  data  structures  links  and  their 
relations to the object that is modelled need also to be explained. A computer model has to be 
testable in two ways. Firstly, we can test that the model is adequate in terms of what it models, 
and  secondly  test  how the  model  is  implemented  and  whether  the  implementation  itself  is 
adequate. 

Churchland and Sejnowski (1992) note that real worldliness has two principal aspects, namely (1) 
that the world is more complex, so that scaling up models does not always succeed, and (2) that 
real world events do not occur in isolation. Consequently, virtual models and virtual experiments 
lack realism in several ways. Like many other more ‘conventional’ models,  they do not scale 
well, both structurally and functionally, and the virtual implementation by means of computation, 
reduces  the  number  of  similarities  to  real  world  objects  even  further.  In  a  way,  computer 
simulations  introduce  a  second  layer  of  abstraction.  The  first  layer  is  the  abstraction  or 
conceptualizing of real world phenomena into a model. The second is the simulation of the model 
and its dynamics into the realm of the virtual. 

Levels of Explanation

Models and simulations are targeted at different levels of explanation. A model can be used to 
explain certain aspects of a neuron, a particular phenomenon within a neuron, or the behavior of a 
collection of neurons. Another way to specify levels of explanation of models concerns the model 
itself. Models and simulations have a high level task to explain something. This level is likely to 
be the most abstract, and much of the model’s implementation and internal workings may be of 
little interest. If, for example, we are presented with a simulation of the behavior of a few neurons 
on a computer screen, the actual implementation is of no concern to the observer or experimenter. 
The neuron simulation works (hopefully) as  it  should - it  should work according to a set  of 
specifications, which the experimenter is aware of. However, there are many layers of programs, 
library functions, operating system, device drivers, integrated circuits, gates, resistors and wires. 
The laptop computer, which I am using now, has several  quite different  programs for neural 
simulations stored on it. Most of these models are trying to explain the same thing at the highest 
or abstract  level.  They are all  about  relatively simple artificial  neural  nets,  Hebbian learning, 
learning  algorithms  e.g.  back  propagation,  and  so  on.  The  fact  that  the  ‘neurons’  in  these 
programs are mathematical structures involving mostly linear algebra is not essential to know or 
understand  in  detail  for  many  users  of  the  computer  programs.  The  implementation  of  the 
mathematical engine, the subsystem that evaluates and transforms the matrices, is accessible only 
to  the  mathematically  oriented  computer  programmer.  Then,  of  course,  there  are  all  the 
components and systems that are part of the implementation on an actual machine. Very few of us 
have a deep understanding of the technical details of these systems and components.

Conclusion
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Models and simulations are part of what is considered scientific method in the empirical sciences, 
although  it  is  not  clear  what  the  term  scientific  method actually  denotes.  In  some  scientific 
disciplines, like in the field of Cognitive Science, there are many phenomena which do not belong 
to the  observable world; but as Peschl and Scheutz point out that “[i]t is exactly this ‘hidden 
character’ of many cognitive processes which makes this domain so interesting as an object of 
scientific research” (Peschl and Scheutz, 2001). 

This holds true for other disciplines. The fact that many processes are not accessible for direct or 
indirect observation is also interesting in terms of what can be modeled and simulated. It is not so 
much the mode of experimentation. Whether real world objects or ‘virtual objects’ are the targets 
of the experiment does not seem to be that much a point of controversy. It is, I suspect, the human 
contribution during analysis and interpretation that makes the experiment and the results appear 
to be ‘reasonable’ in terms of their value as scientific evidence. We should not forget that with 
the ever increasing complexity of computer hardware and the operating system software, it  is 
impossible for most application programmers to understand much of these system ‘operations’ in 
any detail. Some of the users of software that offers a friendly interface for experimentation with 
artificial neural nets, for example, may not understand how the neural nets work on a theoretical 
level, or how they are implemented mathematically or as programs. However this is a point of 
concern,  in  the  same  way  it  should  be a  concern  when  using  any  other  kind  of  technical 
equipment  in  scientific  experimentation.  The  challenge  remains  for  the  provision  of  suitable 
explanations of how the apparatus (computer) works, and more importantly how the model or 
simulation that is implemented on the computer relates to the real world. The explanations will 
need to be different, due to the inherent difficulties in demonstrating causal chains in a virtual 
world. 
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