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Consider the context of selecting an optimal system from amongst a finite set of competing systems,

based on a “stochastic” objective function and subject to multiple “stochastic” constraints. In this

context, we characterize the asymptotically optimal sample allocation that maximizes the rate at

which the probability of false selection tends to zero. Since the optimal allocation is the result

of a concave maximization problem, its solution is particularly easy to obtain in contexts where

the underlying distributions are known or can be assumed, e.g., normal, Bernoulli. We provide

a consistent estimator for the optimal allocation, and a corresponding sequential algorithm that

is fit for implementation. Various numerical examples demonstrate where and to what extent the

proposed allocation differs from competing algorithms.

1. Introduction

The simulation-optimization (SO) problem is a nonlinear optimization problem where the objective

and constraint functions, defined on a set of candidate solutions or “systems,” are observable only

through consistent estimators. The consistent estimators can be defined implicitly, e.g., through

a stochastic simulation model. Since the functions involved in SO can be specified implicitly, the

formulation affords virtually any level of complexity. Due to this generality, the SO problem has

received much attention from both researchers and practitioners in the last decade. Variations of

the SO problem are readily applicable in such diverse contexts as vehicular transportation networks,

quality control, telecommunication systems, and health care. See Andradóttir [2006], Spall [2003],

Fu [2002], Barton and Meckesheimer [2006], and Ólafsson and Kim [2002] for overviews and entry

points into this literature, and Henderson and Pasupathy [2011] for a collection of contributed SO

problems.

SO’s large number of variations stem primarily from differences in the nature of the feasible set

and constraints. Among SO’s variations, the unconstrained SO problem on finite sets has arguably

seen the most development. Appearing broadly as ranking and selection [Kim and Nelson, 2006],

the currently available solution methods are reliable and have stable digital implementations. In

contrast, the constrained version of the problem — SO on finite sets having “stochastic” constraints
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— has seen far less development, despite its usefulness in the context of multiple performance

measures.

To explore the constrained SO variation in more detail, consider the following setting. Suppose

there exist multiple performance measures defined on a finite set of systems, one of which is primary

and called the objective function, while the others are secondary and called the constraint functions.

Suppose further that the objective and constraint function values are estimable for any given

system using a stochastic simulation, and that the quality of the objective and constraint function

estimators is dependent on the simulation effort expended. The constrained SO problem is then to

identify that system having the best objective function value, from amongst those systems whose

constraint values cross a pre-specified threshold, using only the simulation output. The efficiency

of a solution to this problem, which we will define in rigorous terms later in the paper, is measured

in terms of the total simulation effort expended.

The broad objective of our work is to rigorously characterize the nature of optimal sampling

plans when solving the constrained SO problem on finite sets. As we demonstrate, such char-

acterization is extremely useful in that it facilitates the construction of asymptotically optimal

algorithms. The specific questions we ask along the way are twofold.

Q.1 Let an algorithm for solving the constrained SO problem estimate the objective and con-

straint functions by allocating a portion of an available simulation budget to each competing

system. Suppose further that this algorithm returns to the user that system having the best

estimated objective function, amongst the estimated-feasible systems. As the simulation bud-

get increases, the probability that such an algorithm returns any system other than the truly

best system decays to zero. Can the asymptotic behavior of this probability of false selection

be characterized? Specifically, can its rate of decay be deduced as a function of the sampling

proportions allocated to the various systems?

Q.2 Given a satisfactory answer to Q.1, can a method be devised to identify the sampling pro-

portion that maximizes the rate of decay of the probability of false selection?

This work answers both of the above questions in the affirmative. Relying on large-deviation

principles and generalizing prior work in the context of unconstrained systems [Glynn and Juneja,

2004], we fully characterize the probabilistic decay behavior of the false selection event as a function

of the budget allocations. We then use this characterization to formulate a mathematical program

whose solution is the allocation that maximizes the rate of probabilistic decay. Since the constructed

mathematical program is a concave maximization problem, identifying the asymptotically optimal
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solution is easy, at least in contexts where the underlying distributional family of the simulation

estimator is known or assumed.

1.1 This Work in Context

Prior research on selecting the best system in the unconstrained context falls broadly under one of

three categories:

– traditional ranking and selection (R&S) procedures [see, e.g., Kim and Nelson, 2006, for an

overview], which typically require a normality assumption and provide finite-time probabilistic

guarantees on the probability of false selection,

– the Optimal Computing Budget Allocation (OCBA) framework [see, e.g., Chen et al., 2000],

which, under the assumption of normality, provides an approximately optimal sample alloca-

tion, and

– the large-deviations (LD) approach [see, e.g., Glynn and Juneja, 2004], which provides an

asymptotically optimal sample allocation in the context of general light-tailed distributions.

Corresponding research in the constrained context is taking an analogous route. For example, as

illustrated in table 1, recent work by Andradóttir and Kim [2010] provides finite-time guarantees

on the probability of false selection in the context of “stochastically” constrained SO and parallels

traditional R&S work. Similarly, recent work by Lee et al. [2011] in the context of “stochastically”

constrained SO parallels the previous OCBA work in the unconstrained context. Our work, which

appears in the bottom left-hand cell of table 1, provides the complete generalization of previous large

deviations work in ordinal optimization by Glynn and Juneja [2004] and in feasibility determination

by Szechtman and Yücesan [2008].

1.2 Problem Statement

Consider a finite set i = 1, . . . , r of systems, each with an unknown objective value hi ∈ R and

unknown constraint values gij ∈ R. Given constants γj ∈ R, we wish to select the system with the

lowest objective value hi, subject to the constraints gij ≥ γj , j = 1, 2, . . . , s. That is, we consider

Problem P : arg min
i=1,...,r

hi

s.t. gij ≥ γj , for all j = 1, 2, . . . , s;

where hi and gij are expectations, estimates of hi and gij are observed together through simulation

as sample means, and a unique solution to Problem P is assumed to exist.
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Table 1: Research in the area of simulation optimization on finite sets can be categorized by
the nature of the result, the required distributional assumption, and the presence of objective
function or constraints.

Result Required Optimization: Feasibility: Constrained Optimization:
Time Dist’n only objective(s) only constraint(s) objective(s) & constraint(s)

Finite Normal
Ranking & Selection
[e.g., Kim and Nel-
son, 2006]

Batur and Kim
[2010]

Andradóttir and Kim [2010]

Infinite
Normal

OCBA [e.g., Chen
et al., 2000]

[application of
general solution]1

OCBA-CO [Lee et al., 2011]

General
Glynn and Juneja
[2004]

Szechtman and
Yücesan [2008]

?

1 Problems lying in the infinite-time, normal row are also solved as applications of the solutions
in the infinite-time, general row.

Let α = (α1, α2, . . . , αr) be a vector denoting the proportion of the total sampling budget given

to each system, so that
∑r

i=1 αi = 1 and αi ≥ 0 for all i = 1, 2, . . . , r. Furthermore, let the system

having the smallest estimated objective value amongst the estimated-feasible systems be selected

as the estimated solution to Problem P . Then we ask, what vector of proportions α maximizes the

rate of decay of the probability that this procedure returns a suboptimal solution to Problem P?

1.3 Organization

In Section 2 we discuss the contributions of this work. Notation and assumptions for the paper are

described in Section 3. In Section 4 we derive an expression for the rate function of the probability of

false selection. In Section 5, we present a general sampling framework and a conceptual algorithm to

solve for the optimal allocation. A consistent estimator and an implementable sequential algorithm

for the optimal allocation is provided in Section 6. Section 7 contains numerical illustrations for

the normal case and a comparison with OCBA-CO [Lee et al., 2011]. Section 8 contains concluding

remarks.

2. Contributions

This paper addresses the question of identifying the “best” amongst a finite set of systems in

the presence of multiple “stochastic” performance measures, one of which is used as an objective

function and the rest as constraints. This question has been identified as a crucial generalization

of the problem of unconstrained simulation optimization on finite sets [Glynn and Juneja, 2004].

The following are our specific contributions.
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C.1 We present the first complete characterization of the optimal sampling plan for constrained SO

on finite sets when the performance measures can be observed as simulation output. Relying

on a large-deviations framework, we derive the probability law for erroneously obtaining a

suboptimal solution as a function of the sampling plan. We then demonstrate that the optimal

sampling plan can be identified as the solution to a strictly concave maximization problem.

C.2 We present a consistent estimator and a corresponding algorithm toward estimating the op-

timal sampling plan. The algorithm is easy to implement in contexts where the underlying

distributions governing the performance measures are known or assumed, e.g., the underly-

ing distributions are normal or Bernoulli. The normal context is particularly relevant since

a substantial portion of the corresponding literature in the unconstrained context makes a

normality assumption. In the absence of such distributional knowledge or assumption, the

proposed framework inspires an approximate algorithm derived through an approximation of

the rate function using Taylor’s Theorem [Rudin, 1976, p. 110].

C.3 For the specific context involving performance measures constructed using normal random

variables, we use numerical examples to demonstrate where and to what extent our only

competitor in the normal context (OCBA-CO) is suboptimal. There currently appear to be

no competitors to the proposed framework for more general contexts.

3. Preliminaries

In this section, we define notation, conventions, and key assumptions used in the paper.

3.1 Notation and Conventions

For notational convenience, we use i ≤ r and j ≤ s as shorthand for i = 1, . . . , r and j = 1, . . . , s.

Also, we refer to the feasible system with the lowest objective value as system 1. We partition the

set of r systems into the following four mutually exclusive and collectively exhaustive subsets.

1 := argmin
i
{hi : gij ≥ γj for all j ≤ s} is the unique best feasible system;

Γ :={i : gij ≥ γj for all j ≤ s, i �= 1} is the set of suboptimal feasible systems;
Sb :={i : h1 ≥ hi and gij < γj for at least one j ≤ s} is the set of infeasible systems

that have better (lower) objective values than system 1; and

Sw :={i : h1 < hi and gij < γj for at least one j ≤ s} is the set of infeasible systems
that have worse (higher) objective values than system 1.
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The partitioning of the suboptimal systems into the sets Γ, Sb and Sw implies that to be falsely

selected as the best feasible system, systems in Γ must “pretend” to be optimal, systems in Sb must

“pretend” to be feasible, and systems in Sw must “pretend” to be both optimal and feasible. As

will become evident, this partitioning is strategic and facilitates analyzing the behavior of the false

selection probability.

We use the following notation to distinguish between constraints on which the system is classified

as feasible or infeasible.

Ci
F := {j : gij ≥ γj} is the set of constraints satisfied by system i; and

Ci
I := {j : gij < γj} is the set of constraints not satisfied by system i.

We interpret the minimum over the empty set as infinity [see, e.g., Dembo and Zeitouni, 1998,

p. 127], and we likewise interpret the union over the empty set as an event having probability

zero. We interpret the intersection over the empty set as the certain event, that is, an event having

probability one. Also, we say that a sequence of sets Am converges to the set A, denoted Am → A,

if for large enough m the symmetric difference (Am ∩Ac) ∪ (A ∩Ac
m) = ∅.

To aid readability, we have adopted the following notational convention throughout the paper:

lower-case letters denote fixed values; upper-case letters denote random variables; upper-case Greek

or script letters denote fixed sets; estimated (random) quantities are accompanied by a “hat,” e.g.,

Ĥ1 estimates the fixed value h1; optimal values have an asterisk, e.g., x
∗.

3.2 Assumptions

To estimate the unknown quantities hi and gij , we assume we may obtain replicates of the output

random variables (Hi, Gi1, . . . , Gis) from each system. We make the following further assumptions.

Assumption 1. The output random variables (Hi, Gi1, . . . , Gis) are mutually independent for all

i ≤ r, and for any particular system i, the output random variables Hi, Gi1, . . . , Gis are mutually

independent.

While it is possible to relax Assumption 1, we have chosen not to do so in the interest of minimizing

distraction from the main thrust of the paper.

To ensure that each system is distinguishable from the quantity on which its potential false

evaluation as the “best” system depends, and to ensure that the sets of systems may be correctly

estimated with probability one (wp1), we make the following assumption.
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Assumption 2. No system has the same objective value as system 1, and no system lies exactly

on any constraint, that is, h1 �= hi for all i ≤ r, i �= 1 and gij �= γj for all i ≤ r, j ≤ s.

Assumptions of this type also appear in Glynn and Juneja [2004] and Szechtman and Yücesan

[2008].

We use observations of the output random variables to form estimators Ĥi = (αin)
−1∑αin

k=1Hik

and Ĝij = (αin)
−1∑αin

k=1Gijk of hi and gij , respectively, where αi > 0 denotes the proportion of

the total sample n which is allocated to system i. Let

ΛĤ
i (θ) = logE[eθĤi ] and ΛĜ

ij(θ) = logE[eθĜij ]

be the cumulant generating functions of Ĥi and Ĝij , respectively. Let the effective domain of a

function f(·) be denoted by Df = {x : f(x) < ∞}, and its interior by D◦f . As is usual in LD

contexts, we make the following assumption.

Assumption 3. For each system i and for each constraint j of system i,

(1) the limits ΛH
i (θ) = limn→∞ 1

αin
ΛĤ
i (αinθ) and Λ

G
ij(θ) = limn→∞ 1

αin
ΛĜ
ij(αinθ) exist as ex-

tended real numbers for all θ;

(2) the origin belongs to the interior of DΛH
i

and DΛG
ij
, that is, 0 ∈ D◦

ΛH
i

and 0 ∈ D◦
ΛG
ij
;

(3) ΛH
i (θ) and Λ

G
ij(θ) are strictly convex and C∞ on D◦

ΛH
i

and D◦
ΛG
ij
, respectively;

(4) ΛH
i (θ) and Λ

G
ij(θ) are steep, that is, for any sequence {θn} ∈ DΛH

i
that converges to a bound-

ary point of DΛH
i
, limn→∞ |ΛH ′

i (θn)| = ∞, and likewise, for {θn} ∈ DΛG
ij

converging to a

boundary point of DΛG
ij
, limn→∞ |ΛG ′

ij (θn)| =∞.

Assumption 3 implies that Ĥi → hi wp1 and Ĝij → gij wp1 [see Bucklew, 2003, Remark 3.2.1].

Furthermore, Assumption 3 ensures that Ĥi and Ĝij satisfy the large deviations principle [Dembo

and Zeitouni, 1998, p. 44] with good rate functions Ii(x) = supθ∈R{θx − ΛH
i (θ)} and Jij(y) =

supθ∈R{θy−ΛG
ij(θ)}. Assumption 3(3) is stronger than what is needed for the Gärtner-Ellis theorem

to hold. However, we require ΛH
i (θ) and Λ

G
ij(θ) to be strictly convex and C∞ on D◦

ΛH
i
and D◦

ΛG
ij
,

respectively, so that Ii(x) and Jij(y) are strictly convex and C∞ for x ∈ FH◦
i = int{ΛH ′

i (θ) : θ ∈
D◦
ΛH
i
} and y ∈ FG◦

ij = int{ΛG ′
ij (θ) : θ ∈ D◦

ΛG
ij
}, respectively.

Let h� = argmini{hi} and let hu = argmaxi{hi}. We further assume,

Assumption 4. (1) the interval [h�, hu] ⊂ ∩r
i=1F

H◦
i , and (2) γj ∈ ∩r

i=1F
G◦
ij for all j ≤ s.
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As in Glynn and Juneja [2004], Assumption 4(1) ensures that Ĥi may take any value in the

interval [h�, hu] and that P (Ĥ1 ≥ Ĥi) > 0 for 2 ≤ i ≤ r. Assumption 4(2) ensures there is a

nonzero probability that each system will be deemed feasible or infeasible on any of its constraints.

Specifically, it ensures there is a nonzero probability that an infeasible system will be estimated

feasible and that system 1 will be estimated infeasible. Thus P (∩j∈Ci
I
Ĝij ≥ γj) > 0 for i ∈ Sb ∪ Sw

and P (Ĝ1j < γj) > 0 for all j ≤ s.

4. Rate Function of Probability of False Selection

The false selection (FS) event is the event that the actual best feasible system, system 1, is not

the estimated best feasible system. More specifically, FS is the event that system 1 is incorrectly

estimated infeasible on any of its constraints, or that system 1 is estimated feasible on all of

its constraints but another system, also estimated feasible on all of its constraints, has the best

estimated-objective value. Let Γ̄ be the set of estimated-feasible systems, excluding system 1, that

is, Γ̄ = {i : Ĝij ≥ γj for all j ≤ s, i �= 1}. Then formally, the probability of false selection is

P{FS} = P{(∪j Ĝ1j < γj) ∪ ((∩j Ĝ1j ≥ γj) ∩ (Ĥ1 ≥ min
i∈Γ̄

Ĥi))}

= P{∪j Ĝ1j < γj}+ P{(∩j Ĝ1j ≥ γj) ∩ (∪i∈Γ̄ Ĥ1 ≥ Ĥi)} (1)

= P{FS1}+ P{FS2}.

In the following Theorems 1 and 2, we individually derive the rate functions for P{FS1} and
P{FS2} appearing in equation (1).

First let us consider the rate function for P{FS1}, the probability that system 1 is declared

infeasible on any of its constraints. Theorem 1 establishes the asymptotic behavior of P{FS1} as
the rate function corresponding to the constraint on system 1 that is most likely to be declared

unsatisfied.

Theorem 1. The rate function for P {FS1} is given by

− lim
n→∞

1

n
logP{FS1} = min

j
α1J1j(γj).

Proof. We find the following upper and lower bounds for P{FS1},

max
j

P{Ĝ1j < γj} ≤ P{∪j Ĝ1j < γj} ≤ smax
j

P{Ĝ1j < γj}.

To find the rate function for maxj P{Ĝ1j < γj}, we apply Proposition 5 (see Appendix) to find

lim
n→∞

1

n
logmax

j
P{Ĝ1j < γj} = max

j
lim
n→∞

1

n
logP{Ĝ1j < γj}.
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By the Gärtner-Ellis Theorem and Assumption 1,

lim
n→∞

1

n
logP{FS1} = max

j
lim
n→∞

1

n
logP{Ĝ1j < γj} = −min

j
αjJ1j(γj).

Theorem 1 implies that the rate function for P{FS1} is determined by the constraint that is most
likely to qualify system 1 as infeasible. Under our assumptions and with logic similar that given in

the proof of Theorem 1, it can be shown that for any system i with constraint j, the rate function

for the probability that system i is estimated infeasible on constraint j is

lim
n→∞

1

n
logP{Ĝij < γj} = −αiJij(γj).

We now consider P{FS2}. Since the probability that system 1 is estimated feasible tends to

one and under the independence assumption (Assumption 1), we have

lim
n→∞

1

n
logP{(∩j Ĝ1j ≥ γj) ∩ (∪i∈Γ̄ Ĥ1 ≥ Ĥi)} = lim

n→∞
1

n
logP{∪i∈Γ̄ Ĥ1 ≥ Ĥi}. (2)

Therefore the rate function of P{FS2} is governed by the rate at which the probability that system
1 is “beaten” by another estimated-feasible system tends to zero. Since the equality in equation

(2) always holds, in the remainder of the paper we omit the explicit statement of the event that

system 1 is estimated feasible. Since the estimated set of feasible systems Γ̄ may contain worse

feasible systems (i ∈ Γ), better infeasible systems (i ∈ Sb), and worse infeasible systems (i ∈ Sw),

we strategically consider the rate functions for the probability that system 1 is beaten by a system

in Γ, Sb, or Sw separately. Theorem 2 states that the rate function of P{FS2} is determined by

the slowest-converging probability that system 1 will be “beaten” by an estimated-feasible system

from Γ, Sb, or Sw.

Theorem 2. The rate function for P {FS2} is given by the minimum rate function of the probability

that system 1 is beaten by an estimated-feasible system that is (i) feasible and worse, (ii) infeasible

and better, or (iii) infeasible and worse. That is,

− lim
n→∞

1

n
logP{FS2} = min

( system 1 beaten by
feasible and worse system︷ ︸︸ ︷
min
i∈Γ

(inf
x
(α1I1(x) + αiIi(x))),

system 1 beaten by
infeasible and better system︷ ︸︸ ︷

min
i∈Sb

αi

∑
j∈Ci

I

Jij(γj),

min
i∈Sw

(inf
x
(α1I1(x) + αiIi(x)) + αi

∑
j∈Ci

I

Jij(γj))

︸ ︷︷ ︸
system 1 beaten by

infeasible and worse system

)
.
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Proof. See Appendix.

Like the intuition behind Theorem 1, that the rate function of P{FS1} is determined by the

constraint most likely to disqualify system 1, in Theorem 2, the rate function of P{FS2} is de-
termined by the system most likely to “beat” system 1. However systems in Γ, Sb, and Sw must

overcome different obstacles to be declared the best feasible system. Since systems in Γ are truly

feasible, they must overcome one obstacle: optimality. The rate function for systems in Γ is thus

identical to the unconstrained optimization case presented in Glynn and Juneja [2004] and is de-

termined by the system in Γ best at “pretending” to be optimal. Systems in Sb are truly better

than system 1, but are infeasible. They also have one obstacle to overcome to be selected as best:

feasibility. The rate function for systems in Sb is thus determined by the system in Sb which is best

at “pretending” to be feasible. Since an infeasible system in Sb must falsely be declared feasible

on all of its infeasible constraints, the rate functions for the infeasible constraints simply add up

inside the overall rate function for each system in Sb. Systems in Sw are worse and infeasible, so

two obstacles must be overcome: optimality and feasibility. The rate function for systems in Sw is

thus determined by the system that is best at “pretending” to be optimal and feasible, and there

are two terms added in the rate function corresponding to optimality and feasibility.

We will now combine the results for P{FS1} and P{FS2} to derive the rate function for P{FS}.
Recalling from (1) that P{FS} = P{FS1}+ P{FS2}, the overall rate function for the probability
of false selection is governed by the minimum of the rate functions for P{FS1} and P{FS2}.

Theorem 3. The rate function for the probability of false selection, that is, the probability that we

return to the user a system other than system 1 is given by

− lim
n→∞

1

n
logP{FS} = min

( system 1
estimated infeasible︷ ︸︸ ︷
min
j

α1J1j(γj),

system 1 estimated feasible︷ ︸︸ ︷
min
i∈Γ

(inf
x
(α1I1(x) + αiIi(x))),︸ ︷︷ ︸

system 1 beaten by
feasible and worse system

min
i∈Sb

αi

∑
j∈Ci

I

Jij(γj),

︸ ︷︷ ︸
system 1 beaten
by infeasible and
better system

min
i∈Sw

(inf
x
(α1I1(x) + αiIi(x)) + αi

∑
j∈Ci

I

Jij(γj))

︸ ︷︷ ︸
system 1 beaten by

infeasible and worse system

)
.

Theorem 3 asserts that the overall rate function of the probability of false selection is determined

by the most likely of the following four events: (i) system 1 is incorrectly declared infeasible on

one of its constraints; (ii) a feasible and worse system is correctly declared feasible, but incorrectly
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declared best; (iii) an infeasible and better system is correctly declared better, but incorrectly

declared feasible; (iv) an infeasible and worse system is incorrectly declared feasible and best. This

result is intuitive since we expect an unlikely event to happen in the most likely way.

5. Optimal Allocation Strategy

In this section, we derive an optimal allocation strategy that asymptotically minimizes the proba-

bility of false selection. From Theorem 3, an asymptotically optimal allocation strategy will result

from maximizing the rate at which P{FS} tends to zero as a function of α. Thus we wish to

allocate the αi’s to solve the following optimization problem:

max min

(
min
j

α1J1j(γj), min
i∈Γ

(
inf
x
(α1I1(x) + αiIi(x))

)
, min

i∈Sb
αi

∑
j∈Ci

I

Jij(γj),

min
i∈Sw

(
inf
x
(α1I1(x) + αiIi(x)) + αi

∑
j∈Ci

I

Jij(γj)

))
(3)

s.t.
r∑

i=1

αi = 1, αi ≥ 0.

By Glynn and Juneja [2006], infx(α1I1(x)+αiIi(x)) is a concave, strictly increasing, C
∞ function of

α1 and αi. Let x(α1, αi) = arg infx(α1I1(x)+αiIi(x)). As Glynn and Juneja [2006] demonstrate, for

α1 > 0 and αi > 0, x(α1, αi) is a C
∞ function of α1 and αi. Likewise, the linear functions α1J1j(γj)

and αi
∑

j∈Ci
I
Jij(γj) and the sum infx(α1I1(x)+αiIi(x))+αi

∑
j∈Ci

I
Ji(γj) are also concave, strictly

increasing C∞ functions of α1 and αi. Since the minimum of concave, strictly increasing functions

is also concave and strictly increasing, the problem in (3) is a concave maximization problem.

Equivalently, we may rewrite the problem in (3) as the following Problem Q.

Problem Q : max z s.t.

α1J1j(γj) ≥ z, j ∈ C1F

α1I1(x(α1, αi)) + αiIi(x(α1, αi)) ≥ z, i ∈ Γ
αi

∑
j∈Ci

I

Jij(γj) ≥ z, i ∈ Sb

α1I1(x(α1, αi)) + αiIi(x(α1, αi)) + αi

∑
j∈Ci

I

Jij(γj) ≥ z, i ∈ Sw

r∑
i=1

αi = 1, αi ≥ 0.

Since Problem Q is a strictly concave, continuous function of α on a compact set, a unique solution

exists. Proposition 1 states this result, without a formal proof.
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Proposition 1. There exists a unique solution α∗ = {α∗1, α∗2, . . . , α∗r} to Problem Q, with optimal

value z∗.

Let us define Problem Q∗ by replacing the inequality constraints corresponding to systems in

Γ, Sb, and Sw with equality constraints, and forcing each αi to be strictly greater than zero.

Problem Q∗ : max z s.t.

α1J1j(γj) ≥ z, j ∈ C1F

α1I1(x(α1, αi)) + αiIi(x(α1, αi)) = z, i ∈ Γ
αi

∑
j∈Ci

I

Jij(γj) = z, i ∈ Sb

α1I1(x(α1, αi)) + αiIi(x(α1, αi)) + αi

∑
j∈Ci

I

Jij(γj) = z, i ∈ Sw

r∑
i=1

αi = 1, αi > 0.

We present the following proposition regarding the equivalence of Problem Q and Problem Q∗.

Proposition 2. Problems Q and Q∗ are equivalent, that is, Problem Q∗ has the unique solution

α∗ with optimal value z∗.

Proof. First, we note that for αi = 1/r, i ≤ r, we can have z > 0 in Q. Therefore αi = 0 for

i ∈ {1} ∪ Sb is suboptimal since z = 0. Now consider αi = 0 for i ∈ Γ ∪ Sw. In this case, the

constraints for i ∈ Γ ∪ Sw reduce to α1 infx I1(x) = α1I1(h1) = 0, and hence z = 0. Therefore in

Problem Q, we must have α∗i > 0 for all i ≤ r.

Denoting the dual variables ν and λ = (λ1j ≥ 0, λi ≥ 0 : j = 1, . . . , |C1F |, i = 2, . . . , r), we

solve for the KKT conditions. We note that since x(α1, αi) solves α1I
′
1(x) + αiI

′
i(x) = 0, we have

∂
∂α1

(
α1I1(x(α1, αi)) +αiIi(x(α1, αi))

)
= I1(x(α1, αi)) and

∂
∂αi

(
α1I1(x(α1, αi)) +αiIi(x(α1, αi))

)
=

Ii(x(α1, αi)) [see Glynn and Juneja, 2004]. Then we have the following stationarity conditions,

|C1
F |∑

j=1

λ1j +
r∑

i=2

λi = 1 (4)

∑
j∈C1

F

λ1jJ1j(γj) +
∑

i∈Γ∪Sw
λiI1(x(α

∗
1, α

∗
i )) = ν (5)

λiIi(x(α
∗
1, α

∗
i )) = ν, i ∈ Γ (6)

λi

∑
j∈Ci

I

Jij(γj) = ν, i ∈ Sb (7)
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λi

[
Ii(x(α

∗
1, α

∗
i )) +

∑
j∈Ci

I

Jij(γj)
]
= ν, i ∈ Sw, (8)

and the complementary slackness conditions,

λ1j
[
α∗1J1j(γj)− z

]
= 0, j ∈ C1F (9)

λi

[
α∗1I1(x(α

∗
1, α

∗
i )) + α∗i Ii(x(α

∗
1, α

∗
i ))− z

]
= 0, i ∈ Γ (10)

λi

[
α∗i

∑
j∈Ci

I

Jij(γj)− z

]
= 0, i ∈ Sb (11)

λi

[
α∗1I1(x(α

∗
1, α

∗
i )) + α∗i Ii(x(α

∗
1, α

∗
i )) + α∗i

∑
j∈Ci

I

Jij(γj)− z

]
= 0, i ∈ Sw. (12)

Equation (4) implies that at least one λi > 0. Suppose λi = 0 for some i ∈ Γ ∪ Sb ∪ Sw. Since

αi > 0 for all i ≤ r, the rate functions in equations (6)–(8) are strictly greater than zero, which

implies ν = 0, λi = 0 for all i ∈ Γ ∪ Sb ∪ Sw, and
∑|C1

F |
j=1 λ

1
j = 1. Therefore at least one λ1j > 0.

Then in equation (5), it must be the case that for λ1j > 0, the corresponding J1j(γj) = 0. However

we have a contradiction since by assumption, J1j(γj) > 0 for all j ∈ |C1F |. Therefore λi > 0 for all

i ∈ Γ ∪ Sb ∪ Sw.

Since λi > 0 in equations (10)–(12), then complementary slackness implies each of these

constraints is binding. Therefore we may replace the inequality constraints corresponding to

i ∈ Γ ∪ Sb ∪ Sw in Problem Q with equality constraints in Problem Q∗.

The structure of the identical Problem Q∗ lends intuition to the structure of the optimal allo-

cation, as noted in the following steps: (i) Solve a relaxation of Problem Q∗ without the feasibility

constraint for system 1. Let this problem be called Problem Q̃∗, and let z̃∗ be the optimal value at

the optimal solution α̃∗ = (α̃∗1, . . . , α̃∗r) to Problem Q̃∗. (ii) Check if the feasibility constraint for

system 1 is satisfied by the solution α̃∗. If the feasibility constraint is satisfied, α̃∗ is the optimal

solution for Problem Q∗. Otherwise, (iii) force the feasibility constraint to be binding. The steps

(i), (ii), and (iii) are equivalent to solving one of two systems of nonlinear equations, as identified

by the KKT conditions of Problems Q∗ and Q̃∗. Theorem 4 asserts this formally.

Theorem 4. Let the set of suboptimal feasible systems Γ be non-empty, and define Problem Q̃∗

as Problem Q∗ but with the inequality constraint relaxed. Let (α∗, z∗) and (α̃∗, z̃∗) denote the

unique optimal solution and optimal value pairs for Problems Q∗ and Q̃∗, respectively. Consider

the conditions,

C0.
∑r

i=1 αi = 1, α > 0, and
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z = α1I1(x(α1, αi)) + αiIi(x(α1, αi)) = αk
∑

j∈Ck
I
Jkj(γj)

= α1I1(x(α1, α�)) + α�

[
I�(x(α1, α�)) +

∑
j∈C�

I
J�j(γj)

]
, for all i ∈ Γ, k ∈ Sb, � ∈ Sw,

C1.
∑
i∈Γ

I1(x(α1, αi))

Ii(x(α1, αi))
+

∑
i∈Sw

I1(x(α1, αi))

Ii(x(α1, αi)) +
∑

j∈Ci
I
Jij(γj)

= 1,

C2. minj∈C1
F
α1J1j(γj) = z.

Then (i) α̃∗ solves C0 and C1 and minj∈C1
F
α̃∗1J1j(γj) ≥ z̃∗ if and only if α̃∗ = α∗; and

(ii) α∗ solves C0 and C2 and minj∈C1
F
α̃∗1J1j(γj) < z̃∗ if and only if α∗ �= α̃∗.

Proof. Due to the structure of Problem Q, the KKT conditions are necessary and sufficient for

global optimality. From prior results, we recall that the solutions to Problems Q, Q∗, and Q̃∗ exist,

and that condition C0 holds for the solutions α∗ and α̃∗.

We now simplify the KKT equations for Problem Q for use in the remainder of the proof. Since

we found that λi > 0 for all i ∈ Γ ∪ Sb ∪ Sw in the proof of Proposition 2, it follows that ν > 0.

Dividing (5) by ν and appropriately substituting in values from (6)–(8), we find∑
j∈C1

F
λ1jJ1j(γj)

ν
+

∑
i∈Γ

I1(x(α
∗
1, α

∗
i ))

Ii(x(α∗1, α∗i ))
+

∑
i∈Sw

I1(x(α
∗
1, α

∗
i ))

Ii(x(α∗1, α∗i )) +
∑

j∈Ci
I
Jij(γj)

= 1. (13)

By a similar logic to that given in the proof of Proposition 2 and the simplification provided in

(13), omitting terms with λ1j in equation (13) yields condition C1 as a KKT condition for Problem

Q̃∗. Taken together, C0 and C1 create a fully-specified system of equations that form the KKT

conditions for Problem Q̃∗. A solution α is thus optimal to Problem Q̃∗ if and only if it solves C0

and C1.

Proof of Claim (i). (⇒) Suppose α̃∗ solves C0 and C1, and minj∈C1
F
α̃∗1J1j(γj) ≥ z̃∗. Let D(Q∗)

and D(Q̃∗) denote the feasible regions of Problems Q∗ and Q̃∗, respectively. Then α̃∗ ∈ D(Q∗).

Since the objective functions of Problems Q∗ and Q̃∗ are identical, and D(Q∗) ⊂ D(Q̃∗), we know

that z∗ ≤ z̃∗. Therefore α̃∗ ∈ D(Q∗) implies α̃∗ is the optimal solution to Problem Q∗, and by the

uniqueness of the optimal solution, α̃∗ = α∗.

(⇐) Now suppose α̃∗ = α∗. Since α̃∗ is the optimal solution to Problem Q̃∗, then α̃∗ solves

C0 and C1. Further, since α∗ is the optimal solution to Problem Q, α∗ = α̃∗ ∈ D(Q∗). Therefore

minj∈C1
F
α̃∗1J1j(γj) ≥ z̃∗.

Proof of Claim (ii). (⇒) Let us suppose that α∗ solves C0 and C2, and minj∈C1
F
α̃∗1J1j(γj) < z̃∗.

Then α̃∗ /∈ D(Q∗), and therefore α̃∗ �= α∗.
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(⇐) By prior arguments, C0 holds for α∗ and α̃∗. Now suppose α∗ �= α̃∗, which implies

α̃∗ /∈ D(Q∗). Then it must be the case that minj∈C1
F
α̃∗1J1j(γj) < z̃∗. Further, since α̃∗ uniquely

solves C0 and C1, α∗ �= α̃∗ implies that C1 does not hold for α∗. Therefore when solving Problem

Q, it must be the case that λ1j > 0 for at least one j ∈ C1F in equation (13). By the complementary

slackness conditions in equation (9), minj∈C1
F
α∗1J1j(γj) = z̃∗, and hence C2 holds for α∗.

Theorem 4 implies that, since a solution to Problem Q∗ always exists, an optimal solution to

Problem Q can be obtained as the solution to one of the two sets of nonlinear equations C0 and

C1 or C0 and C2. We state the procedure implicit in Theorem 4 as Algorithm 1.

Algorithm 1 Conceptual Algorithm to Solve for α∗

1: Solve the nonlinear system C0, C1 to obtain α̃∗ and z̃∗.
2: if minj α̃

∗
1J1j(γj) ≥ z̃∗ then

3: return α∗ = α̃∗.
4: else
5: Solve the nonlinear system C0, C2 to obtain α∗.
6: return α∗.
7: end if

Theorem 4 assumes that we have at least one system in Γ. In the event that Γ is empty,

conditions C0 and C1 may not form a fully-specified system of equations (e.g., Γ and Sw are

empty), or may not have a solution. In such a case, C0 and C2 provide the optimal allocation.

When the sets Sb and Sw are empty but Γ is nonempty, Theorem 4 reduces to the result presented

in Glynn and Juneja [2004].

6. Consistency and Implementation

In practice, the rate functions in Algorithm 1 are unavailable and must be estimated. Therefore with

a view toward implementation, we address consistency of estimators in this section. Specifically,

we first show that the important sets, {1},Γ, Sb, Sw,Ci
F and Ci

I , can be estimated consistently, that

is, they can be identified correctly as simulation effort tends to infinity. Next, we demonstrate that

the optimal allocation estimator, identified by using estimated rate functions in Algorithm 1, is a

consistent estimator of the true optimal allocation α∗. These generic consistency results inspire

the sequential algorithm presented in Section 6.2, which is easily implementable at least in contexts

where the distribution families underlying the rate functions are known or assumed.
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6.1 Generic Consistency Results

To simplify notation, let each system be allocated m samples, where we explicitly denote the

dependence of the estimators on m in this section. Suppose we have at our disposal consistent

estimators Îmi (x), Ĵ
m
ij (y), i ≤ r, j ≤ s of the corresponding rate functions Ii(x), Jij(y), i ≤ r, j ≤ s.

Such consistent estimators are easy to construct when the distributional families underlying the

true rate functions Ii(x), Jij(y), i ≤ r, j ≤ s are known or assumed. For example, suppose Hik, k =

1, 2, . . . ,m are simulation observations of the objective function of the ith system, assumed to be

resulting from a normal distribution with unknown mean hi and unknown variance σ
2
hi
. The obvious

consistent estimator for the rate function Ii(x) =
(x−hi)

2

2σ2
hi

is then Îmi (x) =
(x−Ĥi)

2

2σ̂2
i

, where Ĥi and

σ̂hi
are the sample mean and sample standard deviation of Hik, k = 1, 2, . . . ,m respectively. In the

more general case where the distributional family is unknown or not assumed, the rate function

may be estimated as the Legendre-Fenchel transform of the cumulant generating function estimator

Îmi (x) = sup
θ
(θx− Λ̂H,m

i (θ)), (14)

where Λ̂H,m
i (θ) = logm−1

∑m
k=1 exp(θHik). In what follows, to preserve generality, our discussion

pertains to estimators of the type displayed in (14). By arguments analogous to those in Glynn

and Juneja [2004] and under our assumptions, the estimator in (14) is consistent.

Let (Ĥi(m), Ĝi1(m), . . . , Ĝis(m)) =
(
1
m

∑m
k=1Hik,

1
m

∑m
k=1Gi1k, . . . ,

1
m

∑m
k=1Gisk

)
denote

the estimators of (hi, gi1, . . . , gis). We define the following notation for estimators of all relevant

sets for systems i ≤ r.

1̂(m) := argmin
i
{Ĥi(m) : Ĝij(m) ≥ γj for all j ≤ s} is the estimated best feasible system;

Γ̂(m) :={i : Ĝij(m) ≥ γj for all j ≤ s, i �= 1̂(m) } is the estimated set of suboptimal
feasible systems;

Ŝb(m) :={i : Ĥ1̂(m)(m) ≥ Ĥi(m) and Ĝij(m) < γj for some j ≤ s} is the estimated set of
infeasible, better systems;

Ŝw(m) :={i : Ĥ1̂(m)(m) < Ĥi(m) and Ĝij(m) < γj for some j ≤ s} is the estimated set of
infeasible, worse systems;

Ĉi
F (m) :={j : Ĝij(m) ≥ γj} is the set of constraints on which system i is estimated feasible;

Ĉi
I(m) :={j : Ĝij(m) < γj} is the set of constraints on which system i is estimated infeasible.

Note that Γ̄ (defined in Section 4) excludes system 1 while Γ̂(m) excludes the estimated system 1.
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Since Assumption 3 implies Ĥi(m) → hi wp1 and Ĝij(m) → gij wp1 for all i ≤ r and j ≤ s,

and the numbers of systems and constraints are finite, all estimated sets converge to their true

counterparts wp1 as m→∞. (See Section 3.1 for a rigorous definition of the convergence of sets.)

Proposition 3 formally states this result.

Proposition 3. Under Assumption 3, 1̂(m)→ 1, Γ̂(m)→ Γ, Ŝb(m)→ Sb, Ŝw(m)→ Sw, Ĉ
i
F (m)→

Ci
F , and Ĉi

I(m)→ Ci
I wp1 as m→∞.

Proof. See Appendix.

Let α̂∗(m) denote the estimator of the optimal allocation vector α∗ obtained by replacing

the rate functions Ii(x), Jij(x), i ≤ r, j ≤ s appearing in conditions C0, C1, and C2 with their

corresponding estimators Îmi (x), Ĵ
m
ij (x), i ≤ r, j ≤ s obtained through sampling, and then using

Algorithm 1. Since the search space {α : αi ≥ 0,
∑r

i=1 αi = 1} is a compact set, and the estimated
(consistent) rate functions can be shown to converge uniformly over the search space, it is no

surprise that α̂∗(m) converges to the optimal allocation vector α∗ as m → ∞ wp1. Theorem 5

formally asserts this result, with a proof that is a direct application of results found in the stochastic

root-finding literature [see, e.g., Pasupathy and Kim, 2010, Theorem 5.7].

Before we state Theorem 5, we state two additional lemmas. We omit the proof of Lemma 1

since it follows very closely along the lines of the proofs presented in Glynn and Juneja [2004].

Lemma 1. Suppose Assumption 4 holds. Then there exists ε > 0 such that Îmi (x) → Ii(x) as

m→∞ uniformly in x ∈ [h� − ε, hu + ε] wp1, for all i ∈ {1} ∪ Γ ∪ Sw.

Lemma 2. Let the system of equations C0 and C1 be denoted f1(α) = 0, and let the system

of equations C0 and C2 be denoted by f2(α) = 0, where f1 and f2 are vector-valued functions

with compact support
∑r

i=1 αi = 1,α ≥ 0. Let the estimators F̂m
1 (α) and F̂m

2 (α) be the same

set of equations as f1(α) and f2(α), respectively, except with all unknown rate functions replaced

by their corresponding estimated quantities. If Assumption 4 holds, then the functional sequences

F̂m
1 (α)→ f1(α) and F̂m

2 (α)→ f2(α) uniformly in α as m→∞ wp1.

Proof. We will prove that the theorem holds in two steps. We first show that α1Î
m
1 (x̂m(α1, αi) +

αiÎ
m
i (x̂m(α1, αi)) converges uniformly in α as m→∞ wp1 for all i ∈ Γ ∪ Sw, where x̂m(α1, αi) =

arg infx(α1Î
m
1 (x)+αiÎ

m
i (x)). Next we show that αi

∑
j∈Ci

I
Ĵm
ij (γj), i ∈ Sb∪Sw, j ≤ s and α1Ĵ

m
1j (γj), j ∈

C1F converge uniformly in α as m→∞ wp1. These assertions, together with the observation that

we search only in the set {α :
∑r

i=1 αi = 1, αi > 0}, and hence Ii(x(α1, αi)) > δ > 0, which implies

for large enough m, Îmi (x̂m(α1, αi)) > δ, proves the theorem.
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By Lemma 1, Îmi (x)→ Ii(x) uniformly in x on [h�−ε, hu+ε] wp1 for some ε > 0. By Glynn and

Juneja [2004], x̂m(α1, αi)→ x(α1, αi) wp1, where x(α1, αi) = arg infx(α1I1(x)+αiÎ
m
i (x)) ∈ [h�, hu].

Therefore for m large enough and for all feasible α1, αi, we have x̂m(α1, αi) ∈ [h� − ε/2, hu + ε/2]

wp1 for all i ∈ {1} ∪ Γ ∪ Sw. It then follows that α1Î
m
1 (x̂m(α1, αi) + αiÎ

m
i (x̂m(α1, αi)) converges

uniformly in α as m→∞ wp1, for all i ∈ Γ ∪ Sw.

Under Assumption 4, it follows from analogous arguments to those in Glynn and Juneja [2004]

that Ĵm
ij (γj) → Jij(γj) as m → ∞ wp1, for all i ∈ Sb ∪ Sw and j ≤ s. Therefore the terms

αi
∑

j∈Ci
I
Ĵm
ij (γj) converge uniformly in α as m → ∞ wp1. Likewise, for all j ∈ C1F , α1Ĵ

m
1j (γj)

converges uniformly in α as m→∞ wp1.

Theorem 5. Let the postulates of Lemma 2 hold, and assume Γ is nonempty. Then the empirical

estimate of the optimal allocation is consistent, that is, α̂∗(m)→ α∗ as m→∞ wp1.

Proof. As argued previously, f1(α) and f2(α) are continuous functions of α on a compact set.

Further, the solutions f1(α) = 0 and f2(α) = 0 exist. If we replace each rate function in Problem

Q with estimated rate functions, these new problems remain continuous, concave maximization

problems on a compact set, which attain their maximums. Therefore the systems F̂m
1 (α) = 0 and

F̂m
2 (α) = 0 have a solution for large enoughm wp1. By Lemma 2 we also have that F̂m

1 (α)→ f1(α)

and F̂m
2 (α) → f2(α) uniformly in α as m → ∞ wp1. We have thus satisfied all the requirements

for convergence of the sample-path solution α̂∗(m) to its true counterpart α∗ as m→∞ wp1 [see

Pasupathy and Kim, 2010, Theorem 5.7].

6.2 A Sequential Algorithm for Implementation

We conclude this section with a sequential algorithm that naturally stems from the conceptual

algorithm (Algorithm 1) outlined in Section 5 and the consistent estimator that we have discussed

in the previous section. Algorithm 2 formally outlines this procedure, where we let n be the total

simulation budget, and ni be the total sample expended at system i.

The essential idea in Algorithm 2 is straightforward. At the end of each iteration, the optimal

allocation vector is estimated using rate function estimators constructed from samples already

gathered from the various systems. Systems are chosen for sampling at the subsequent iteration by

using the estimated optimal allocation vector as the sampling distribution.

We emphasize that in a context where the distributional family underlying the simulation

observations are known or assumed, the rate function estimators should be estimated (in Step 3)

accordingly — by simply estimating the distributional parameters appearing within the expression
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Algorithm 2 Sequential Algorithm with Guaranteed Asymptotic Optimal Allocation

Require: Number of pilot samples b0 > 0; number of samples between allocation vector updates
b > 0.

1: Initialize: collect b0 samples from each system i ≤ r.
2: Initialize: n = rb0, ni = b0. {Initialize total simulation effort and effort for each system.}
3: Update rate function estimators Îni

i (x), Ĵni
ij (x), i ≤ r, j ≤ s.

4: Solve the system C0, C1 using the updated rate function estimators to obtain ̂̃α∗(n) and ̂̃z∗(n).
5: if minj ̂̃α∗1(n)Ĵn1

1j (γj) ≥ ̂̃z∗(n) then
6: α̂∗(n) = ̂̃α∗(n).
7: else
8: Solve the system C0, C2 using the updated rate function estimators to obtain α̂∗(n).
9: end if

10: Collect one sample at each of the systems Xk, k = 1, 2, . . . , b, where the Xk’s are iid random
variates having probability mass function α̂∗(n) and support {1, 2, . . . , r}, and update nXk

=
nXk

+ 1.
11: Set n = n+ b and go to Step 3.

for the rate function. Also, Algorithm 2 provides flexibility on how often the optimal allocation

vector is re-estimated through the algorithm parameter b. The choice of the parameter b will

depend on the particular problem, and specifically, on how expensive the simulation execution is

relative to solving the nonlinear systems in Steps 4 and 7. Lastly, as is clear from the algorithm

listing, Algorithm 2 relies on fully sequential and simultaneous observation of the objective and

constraint functions. Deviation from these assumptions, while interesting, renders the present

context inapplicable.

7. Numerical Examples

To illustrate the proposed optimal allocation, we first present a simple numerical example for the

case in which the underlying random variables are independent and identically distributed (iid)

replicates from a normal distribution. We then compare our proposed optimal allocation to the

OCBA-CO allocation presented by Lee et al. [2011].

In what follows, we have used the actual rate functions governing the simulation estimators for

analysis. We have followed this route, instead of using the sequential estimator outlined in Algo-

rithm 2, because our primary objective in this section is to understand the asymptotic allocation

proposed by our theory, and to highlight its deviation from the asymptotic solution proposed by

OCBA-CO. Owing to their routine nature, we have chosen not to include results from our numerical

tests demonstrating that the sequential estimator in Algorithm 2 indeed converges to the optimal

allocation vector identified by theory.
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7.1 Illustration of Proposed Allocation on a Normal Example

Suppose Hi is distributed iid normal(hi, σ
2
hi
) and Gij is distributed iid normal(gij , σ

2
gij ) for all i ≤ r,

j ≤ s. The relevant rate functions for the normal case are

min
j

α1J1j(γj) = min
j

α1(γj − g1j)
2

2σ2g1j
, i ∈ {1},

α1I1(x(α1, αi)) + αiIi(x(α1, αi)) =
(h1 − hi)

2

2(σ2h1
/α1 + σ2hi

/αi)
, i ∈ Γ,

αi

∑
j∈Ci

I

Jij(γj) = αi

∑
j∈Ci

I

(γj − gij)
2

2σ2gij
, i ∈ Sb,

and for i ∈ Sw,

α1I1(x(α1, αi)) + αiIi(x(α1, αi)) + αi

∑
j∈Ci

I

Jij(γj) =
(h1 − hi)

2

2(σ2h1
/α1 + σ2hi

/αi)
+ αi

∑
j∈Ci

I

(γj − gij)
2

2σ2gij
.

Example 1. Suppose we have r = 3 systems and only one constraint, where the Hi’s are iid

normal(hi, σ
2
hi
) random variables and the Gi’s are iid normal(gi, σ

2
gi) random variables for all i ≤ r.

Let γ = 0, and let the mean and variance of each objective and constraint random variable be as

given in table 2.

Table 2: Means and variances for Example 1.
System (i) hi σ2hi

gi σ2gi
1 0 1.0 g1 ∈ (0, 1.5] 1.0
2 2.0 1.0 1.0 1.0
3 2.0 1.0 2.0 1.0

We first note that Γ = {2, 3} and Sb = Sw = ∅. Since the basis for our allocation to systems
in Γ regard their “scaled distance” from system 1, and systems 2 and 3 are equal in this respect,

we intuitively expect that they will receive equal allocation. To demonstrate the effect of g1 on the

allocation to system 1, we vary g1 in the interval (0, 1.5]. Solving for the optimal allocation as a

function of g1 yields the allocations displayed in figure 1 and the rate z
∗ displayed in figure 2.

From figure 1, we deduce that as g1 becomes farther from γ = 0, system 1 requires a smaller

portion of the sample to determine its feasibility. Beyond the point g1 = 1.2872, the feasibility of

system 1 is no longer binding in this example. Therefore the optimal allocation as a function of

g1 does not change for g1 > 1.2872. Likewise, in figure 2, the rate of decay of P{FS}, z∗, grows
as a function of g1 until the point g1 = 1.2872. For g1 > 1.2873, the rate remains constant at

z∗ = 0.3431.
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Figure 1: Graph of g1 versus allocation for the
systems in Example 1
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Figure 2: Graph of g1 versus the rate of decay
of P{FS} for Example 1

7.2 Comparison with OCBA-CO

Lee et al. [2011] describe an OCBA framework for an asymptotic simulation budget allocation

for constrained simulation optimization on finite sets (OCBA-CO). The work by Lee et al. [2011]

provides the only other asymptotic sample allocation result for constrained simulation optimization

on finite sets in the literature.

For suboptimal systems, Lee et al. [2011] divide the systems into a “feasibility dominance” set

and an “optimality dominance” set. Formally, these sets are defined as

SF : the feasibility dominance set, SF = {i : P{Ĝi ≥ γ} < P{Ĥ1 > Ĥi}, i �= 1},
SO : the optimality dominance set, SO = {i : P{Ĝi ≥ γ} ≥ P{Ĥ1 > Ĥi}, i �= 1}.

The assumption α1 � αi∈SO , along with an approximation to the probability of correct selection,

allows Lee et al. [2011] to write their proposed allocation as

αi

αk
=

(
h1 − hk
σhk

)2

Ik∈SO +
(
γ − gk
σgk

)2

Ik∈SF(
h1 − hi
σhi

)2

Ii∈SO +
(
γ − gi
σgi

)2

Ii∈SF

for all i, k = 2, . . . , r. (15)

As can be seen from equation (15), in OCBA-CO, only one term in each of the numerator and

denominator is active at a time. This artifact of the set definitions and the assumptions used in

Lee et al. [2011] can sometimes lead to severely suboptimal allocations for infeasible and worse

systems. The next example we present is designed to highlight this issue and the consequent

inefficiency incurred in the form of a decreased convergence rate of false selection.
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Example 2. Suppose we have two systems and one constraint such that each Hi and Gi are iid

normally distributed. Let the means and variances be as given in table 3, and let γ = 0.

Table 3: Means and variances for Example 2
System (i) hi σ2hi

gi σ2gi
1 0 2.0 10.0 1.0
2 2.0 1.0 g2 ∈ [−1.9, 0) 1.0

Note the following features of this example: (i) Since system 2 belongs to SO for large enough n

and g2 ∈ [−1.9, 0), the OCBA-CO allocation to system 2 does not depend on g2; (ii) For all values

of g2, system 2 is an element of Sw, and hence the proposed allocation will change as a function of

g2; (iii) System 1 is decidedly feasible (g1 = 10 and σg1 = 1), and so does not require much sample

for detecting its feasibility.

Solving for the optimal allocation as a function of g2 yields the allocations displayed in figure 3

and the overall rate of decay of P{FS} displayed in figure 4. From the proposed optimal allocation
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Figure 3: Graph of g2 versus allocation for the
systems in Example 2
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Figure 4: Graph of g2 versus the rate of decay
of P{FS} for the systems in Example 2

in figure 3, we see that the allocation to system 2 should not remain constant as a function of g1,

as proposed by Lee et al. [2011]. In fact, for certain values of g1, we give nearly all of our sample

to system 2.

Now suppose we fix the constraint value for system g2 and explore the allocation to system 1 as

a function of σh1 . As a result of the α1 � αi assumption, the OCBA-CO allocation to α1 increases

as a function σh1 , the variance of the objective value of system 1. The next example we present in

this section is designed to show how this allocation policy can be severely suboptimal.

22



Example 3. Let us retain the two systems and their values from Example 2, except we will fix

g2 = −1.6, and vary σ2h1
in the interval [0.2, 4]. Solving for the optimal allocation as a function of

σ2h1
yields the allocations displayed in figure 5 and the achieved rate of decay of P{FS} displayed

in figure 6.
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Figure 5: Graph of σ2h1
versus allocation for the

systems in Example 3
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Figure 6: Graph of σ2h1
versus the rate of decay

of P{FS} for the systems in Example 3

From figure 5, we see that the proposed allocation to system 1 increases slightly at first, and

then decreases to a very low, steady allocation from approximately σ2h1
= 1.5 onwards. The steady

allocation occurs because we require only a minimal sample size allocated to system 1 to determine

its feasibility.

Contrasting this allocation is the OCBA-CO allocation, which constantly increases as σ2h1
in-

creases. The OCBA-CO allocation does not exploit the fact that we can correctly select system 1

by allocating more sample to system 2 to disqualify it more quickly. In figure 6, while the proposed

allocation achieves a rate of decay that remains constant as σ2h1
increases beyond approximately

σ2h1
= 1.5, the rate of decay of P{FS} for the OCBA-CO allocation continues to decrease as a

function of σ2h1
.

8. Summary and Concluding Remarks

The constrained SO problem on finite sets is an important SO variation about which little is

currently known. Questions surrounding the relationship between sampling and error-probability

decay, sampling rates to ensure optimal convergence to the correct solution, and minimum sample

size rules that probabilistically guarantee attainment of the correct solution remain largely unex-
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plored. Following recent work by Glynn and Juneja [2004] for the unconstrained SO context and

Szechtman and Yücesan [2008] for the context of detecting feasibility, we take the first steps toward

answering these questions.

To identify the relationship between sampling and error-probability decay, we strategically

divide the competing systems into four sets: best feasible, feasible and worse, infeasible and better,

and infeasible and worse. Such strategic division facilitates expressing the rate function of the

probability of false selection as the minimum of rate functions over these four sets. Finding the

optimal sampling allocation then reduces to solving one of two nonlinear systems of equations.

Two other comments are noteworthy:

(i) We re-emphasize a point relating to implementation. In settings where the underlying dis-

tributions of the simulation observations is known or assumed, the rate function estimators

used within the sequential algorithm should reflect the rate function of the known or as-

sumed distributions, in contrast to estimating the rate functions generically through the

Legendre-Fenchel transform. Our numerical experience suggests that this policy facilitates

implementation quite dramatically. Further, in settings where the underlying distribution is

not known or assumed, this experience suggests that estimating the underlying rate function

using a Taylor’s series approximation up to a few terms might prove a viable alternative to

estimating rate functions through the Legendre-Fenchel transform.

(ii) An important assumption made in this paper is that of independence between the objective

function and constraint estimators for each system. While such assumption is true in certain

contexts, it is violated in a number of other “real-world” contexts. In such contexts, the

framework presented in this paper should be seen as an approximate guide to simulation

allocation obtained through the analysis of an imperfect but tractable model. The question

of extending the proposed framework to more general dependence settings is inherently less

tractable and is currently being investigated.
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Appendix

In this section, we provide two useful results and the proofs that were omitted in the main text.
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8.1 Useful Results

In many of the results we present, we repeatedly cite two useful propositions. The first is the

principle of the slowest term, which, loosely speaking, states that the rate function of a sum of

probabilities is equivalent to the rate function of the slowest converging term in the sum.

Proposition 4 (Principle of the slowest term [see, e.g., Ganesh et al., 2004, Lemma 2.1]). Let

ain, i = 1, 2, . . . , k, be a finite number of sequences in R
+, the set of positive reals. If limn→∞ 1

n log a
i
n

exists for all i, then

lim
n→∞

1

n
log

k∑
i=1

ain = max
i

(
lim
n→∞

1

n
log ain

)

A consequence of the principle of the slowest term, Proposition 5 states that the slowest amongst

a set of rate functions is equivalent to the rate function of the slowest sequence.

Proposition 5. Let ain be defined as in Proposition 4. If limn→∞ 1
n log a

i
n exists for all i, then

max
i

(
lim
n→∞

1

n
log ain

)
= lim

n→∞
1

n
log

(
max

i
ain

)

Proof. By the principle of the slowest term, the lower bound is

max
i

(
lim
n→∞

1

n
log ain

)
= lim

n→∞
1

n
log

k∑
i=1

ain ≥ lim
n→∞

1

n
logmax

i
ani .

Now the upper bound is given by

max
i

(
lim
n→∞

1

n
log ain

)
= lim

n→∞
1

n
log

k∑
i=1

ain ≤ lim
n→∞

1

n
log

(
kmax

i
ani

)
= lim

n→∞
1

n
logmax

i
ani .

8.2 Proof of Theorem 2 and Proposition 3

The rate function for P{FS2} is the rate function for the probability that system 1 is estimated

feasible, but another estimated-feasible system has a better estimated objective value. Since the

estimated set of feasible systems Γ̄ may contain worse feasible systems (i ∈ Γ), better infeasible

systems (i ∈ Sb), and worse infeasible systems (i ∈ Sw), in Lemma 3 we strategically consider the

rate functions for the probability that system 1 is beaten by a system in Γ̄ ∩ Γ, Γ̄ ∩ Sb, or Γ̄ ∩ Sw

separately. Lemmas 5 – 7 provide specific statements of these three rate functions over the sets

Γ, Sb, and Sw, respectively. Lemma 4 provides a useful bookkeeping-type result that is the starting

point for Lemmas 5 – 7.

Assuming for now that the required limits exist, Lemma 3 states that the rate function of

P{FS2} is determined by the slowest-converging probability that system 1 will be “beaten” by an

estimated-feasible system from Γ, Sb, or Sw.
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Lemma 3. The rate function for P {FS2} is given by the minimum rate function of the probability

that system 1 is beaten by an estimated-feasible system that is (i) feasible and worse, (ii) infeasible

and better, or (iii) infeasible and worse. That is,

− lim
n→∞

1

n
logP{FS2} = min

(
− lim

n→∞
1

n
logP{∪i∈Γ̄∩ΓĤ1 ≥ Ĥi},

− lim
n→∞

1

n
logP{∪i∈Γ̄∩SbĤ1 ≥ Ĥi},− lim

n→∞
1

n
logP{∪i∈Γ̄∩SwĤ1 ≥ Ĥi}

)
. (16)

Proof. From equation (1), the probability that system 1 is beaten by another estimated-feasible

system can be written as

P{∪i∈Γ̄ Ĥ1 ≥ Ĥi} = P{(∪i∈Γ̄∩ΓĤ1 ≥ Ĥi) ∪ (∪i∈Γ̄∩SbĤ1 ≥ Ĥi) ∪ (∪i∈Γ̄∩SwĤ1 ≥ Ĥi)}.

We have

1

n
log

(
max

(
P{∪i∈Γ̄∩ΓĤ1 ≥ Ĥi}, P{∪i∈Γ̄∩SbĤ1 ≥ Ĥi}, P{∪i∈Γ̄∩SwĤ1 ≥ Ĥi}

))
≤ 1

n
logP{∪i∈Γ̄Ĥ1 ≥ Ĥi}

≤ 1

n
log

(
P{∪i∈Γ̄∩ΓĤ1 ≥ Ĥi}+ P{∪i∈Γ̄∩SbĤ1 ≥ Ĥi}+ P{∪i∈Γ̄∩SwĤ1 ≥ Ĥi}

)
.

Assuming the relevant limits exist, the conclusion is reached by noting that the limit of the left-

hand and right-hand sides are equivalent by Proposition 5 and the principle of the slowest term,

respectively.

Next, we will individually consider each of the terms on the right-hand side of equation (16),

and establish their respective limits. However before proceeding to these results, we first present

the following lemma which is a preliminary step for the proofs that follow. Lemma 4 uses the law

of total probability to further separate the events involved in system 1 being “beaten” by another

estimated-feasible system.

Lemma 4. For sets of systems S ∈ {Γ, Sb, Sw} and C ⊆ S,

P{∪i∈Γ̄∩S Ĥ1 ≥ Ĥi}
=

∑
C

P{(∪i∈CĤ1 ≥ Ĥi) ∩ (∩i∈C ∩j∈Ci
F
Ĝij ≥ γj) ∩ (∩i∈C ∩j∈Ci

I
Ĝij ≥ γj) ∩ (∩i∈S\C ∪j Ĝij < γj)}

(17)

Proof. By the law of total probability, for some set of systems C ⊆ S,

P{∪i∈Γ̄∩S Ĥ1 ≥ Ĥi} =
∑
C

P{(∪i∈Γ̄∩SĤ1 ≥ Ĥi) ∩ (Γ̄ ∩ S = C)}
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=
∑
C

P{(∪i∈CĤ1 ≥ Ĥi) ∩ (Γ̄ ∩ S = C)} =
∑
C

P{(∪i∈CĤ1 ≥ Ĥi) ∩i∈C (i ∈ Γ̄) ∩i∈S\C (i /∈ Γ̄)}

=
∑
C

P{(∪i∈CĤ1 ≥ Ĥi) ∩ (∩i∈C (∩j∈Ci
F
Ĝij ≥ γj ∩j∈Ci

I
Ĝij ≥ γj)) ∩ (∩i∈S\C ∪j Ĝij < γj)}.

Let us now consider the rate function of the probability that system 1 is “beaten” by a worse

estimated-feasible system from Γ. Since Γ̄ is equivalent to Γ in the limit, and we are considering

only the probability that system 1 is beaten by another truly feasible system, we expect that the

rate function will be the same as in the unconstrained case presented by Glynn and Juneja [2004].

Also, since system 1 can be beaten by any system in Γ̄ ∩ Γ, we intuitively expect the rate function
to be the minimum rate function across all systems in Γ, corresponding to the system that is “best”

at crossing the optimality hurdle. Lemma 5 states that this is indeed the case.

Lemma 5. The rate function for the probability that system 1 is estimated feasible and has a worse

estimated objective value than an estimated-feasible system from Γ (feasible and worse) is

− lim
n→∞

1

n
logP{∪i∈Γ̄∩Γ Ĥ1 ≥ Ĥi} = min

i∈Γ

(
inf
x
(α1I1(x) + αiIi(x))

)
.

Proof. From Lemma 4, let S = Γ and therefore C ⊆ Γ. Then

P{∪i∈Γ̄∩Γ Ĥ1 ≥ Ĥi}
=

∑
C

P{(∪i∈CĤ1 ≥ Ĥi) ∩ (∩i∈C ∩j∈Ci
F
Ĝij ≥ γj) ∩ (∩i∈C ∩j∈Ci

I
Ĝij ≥ γj) ∩ (∩i∈Γ\C ∪j Ĝij < γj)}

We derive a lower bound bound by letting C = Γ and noticing that all constraints are feasible for

all i ∈ Γ. Then

P{∪i∈Γ̄∩Γ Ĥ1 ≥ Ĥi} ≥ P{(∪i∈ΓĤ1 ≥ Ĥi) ∩ (∩i∈Γ ∩j Ĝij ≥ γj)}
≥ max

i∈Γ
P{(Ĥ1 ≥ Ĥi) ∩ (∩i∈Γ ∩j Ĝij ≥ γj)}.

We derive an upper bound by noting that,

P{∪i∈Γ̄∩Γ Ĥ1 ≥ Ĥi} ≤ P{∪i∈Γ Ĥ1 ≥ Ĥi} ≤ |Γ|max
i∈Γ

P{Ĥ1 ≥ Ĥi}. (18)

By Proposition 5 and the independence assumption, the rate function for the lower bound is,

lim
n→∞

1

n
logmax

i∈Γ
P{(Ĥ1 ≥ Ĥi) ∩ (∩i∈Γ ∩j Ĝij ≥ γj)}

= max
i∈Γ

lim
n→∞

1

n
logP{(Ĥ1 ≥ Ĥi)︸ ︷︷ ︸

pr →0

∩ (∩i∈Γ ∩j Ĝij ≥ γj)︸ ︷︷ ︸
pr →1

} = max
i∈Γ

lim
n→∞

1

n
logP{Ĥ1 ≥ Ĥi}.
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Likewise applying Proposition 5 to equation (18), we find that the rate function for the upper

bound is equivalent to the rate function for the lower bound. By Glynn and Juneja [2004],

− lim
n→∞

1

n
logP{Ĥ1 ≥ Ĥi} = inf

x
(α1I1(x) + αiIi(x)),

and hence the conclusion follows.

We now consider the rate function of the probability that system 1 has a worse estimated

objective value than an estimated-feasible system from Sb (infeasible but better). We state Lemma

6 without proof as it is similar to the proof of Lemma 7, which immediately follows.

Lemma 6. The rate function for the probability that system 1 is estimated feasible and has a worse

estimated objective value than an estimated-feasible system from Sb (infeasible and better) is

− lim
n→∞

1

n
logP{∪i∈Γ̄∩Sb Ĥ1 ≥ Ĥi} = min

i∈Sb
αi

∑
j∈Ci

I

Jij(γj).

Finally, we consider the rate function for the probability that system 1 has a worse estimated

objective value than an estimated-feasible system from Sw (infeasible and worse). Lemma 7 states

this result formally.

Lemma 7. The rate function for the probability that system 1 is estimated feasible and has a worse

estimated objective value than an estimated-feasible system from Sw (infeasible and worse) is

− lim
n→∞

1

n
logP{∪i∈Γ̄∩SwĤ1 ≥ Ĥi} = min

i∈Sw

(
inf
x
(α1I1(x) + αiIi(x)) + αi

∑
j∈Ci

I

Jij(γj)

)
.

Proof. From Lemma 4, let S = Sw and therefore C ⊆ Sw. Then we derive an upper bound as,

P{∪i∈Γ̄∩SwĤ1 ≥ Ĥi}
=

∑
C

P{(∪i∈CĤ1 ≥ Ĥi) ∩ (∩i∈C ∩j∈Ci
F
Ĝij ≥ γj) ∩ (∩i∈C ∩j∈Ci

I
Ĝij ≥ γj) ∩ (∩i∈Sw\C ∪j Ĝij < γj)}

(19)

≤
∑
C

P{(∪i∈CĤ1 ≥ Ĥi) ∩ (∩i∈C ∩j∈Ci
I
Ĝij ≥ γj)} ≤

∑
C

P{∪i∈C(Ĥ1 ≥ Ĥi ∩ (∩j∈Ci
I
Ĝij ≥ γj))}

≤
∑
C

|C|max
i∈C

P{(Ĥ1 ≥ Ĥi) ∩ (∩j∈Ci
I
Ĝij ≥ γj)} ≤ 2|Sw||Sw|max

i∈Sw
P{(Ĥ1 ≥ Ĥi) ∩ (∩j∈Ci

I
Ĝij ≥ γj)}.

Therefore the rate function for the upper bound is

lim
n→∞

1

n
logmax

i∈Sw
P{(Ĥ1 ≥ Ĥi) ∩ (∩j∈Ci

I
Ĝij ≥ γj)}. (20)
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Let k∗ = argmaxi∈Sw P{(Ĥ1 ≥ Ĥi) ∩ (∩j∈Ci
I
Ĝij ≥ γj)}. We derive a lower bound by letting k∗ be

the only element in C. Continuing from equation (19),

∑
C

P{(∪i∈CĤ1 ≥ Ĥi) ∩ (∩i∈C ∩j∈Ci
F
Ĝij ≥ γj) ∩ (∩i∈C ∩j∈Ci

I
Ĝij ≥ γj) ∩ (∩i∈Sw\C ∪j Ĝij < γj)}

≥ P{(Ĥ1 ≥ Ĥk∗) ∩ (∩j∈Ck∗
F
Ĝk∗j ≥ γj) ∩ (∩j∈Ck∗

I
Ĝk∗j ≥ γj) ∩ (∩i∈Sw\{k∗} ∪j Ĝij < γj)}.

By Proposition 5 and the independence assumption,

lim
n→∞

1

n
logP{(Ĥ1 ≥ Ĥk∗)︸ ︷︷ ︸

pr →0

∩ (∩j∈Ck∗
F
Ĝk∗j ≥ γj)︸ ︷︷ ︸
pr →1

∩ (∩j∈Ck∗
I
Ĝk∗j ≥ γj)︸ ︷︷ ︸
pr →0

∩ (∩i∈Sw\{k∗} ∪j Ĝij < γj)︸ ︷︷ ︸
pr →1

}

= lim
n→∞

1

n
logmax

i∈Sw
P{(Ĥ1 ≥ Ĥi) ∩ (∩j∈Ci

I
Ĝij ≥ γj)},

which is the rate function for the probability that system k∗ is falsely estimated as optimal and

feasible on all constraints for which it is truly infeasible. We note that this rate function is equivalent

to the rate function for the upper bound in equation (20). By Proposition 5 and the independence

assumption, the rate function for the upper and lower bounds is,

lim
n→∞

1

n
logmax

i∈Sw
P{(Ĥ1 ≥ Ĥi) ∩ (∩j∈Ci

I
Ĝij ≥ γj)}

= max
i∈Sw

(
lim
n→∞

1

n
logP{Ĥ1 ≥ Ĥi}+

∑
j∈Ci

I

lim
n→∞

1

n
logP{Ĝij ≥ γj

)})
Applying previous results, the conclusion follows.

Proof of Theorem 2. We arrive at Theorem 2 by substituting the results from Lemmas 5–7 into the

result presented in Lemma 3.

Proof of Proposition 3. We will only prove that Ĉi
F → Ci

F wp1 as m→∞. The proofs for the other

parts of the theorem follow in a very similar fashion.

By Assumption 3, Ĝij(m) → gij wp1 for all i ≤ r and j ≤ s. We know that gij > γj for each

j ∈ Ci
F . Since |Ci

F | < ∞, we conclude that for large enough m, Ĝij(m) > γj uniformly in j ∈ Ci
F

wp1, and hence the assertion holds.
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S. Andradóttir and S.-H. Kim. Fully sequential procedures for comparing constrained systems via

simulation. Naval Research Logistics, 57(5):403–421, 2010.

R. R. Barton and M. Meckesheimer. Metamodel-based simulation optimization. In S. G. Henderson

and B. L. Nelson, editors, Simulation, Handbooks in Operations Research and Management

Science, pages 535–574. Elsevier, 2006.

D. Batur and S.-H. Kim. Finding feasible systems in the presence of constraints on multiple

performance measures. ACM Transactions on Modeling and Computer Simulation, 20(3):13:1–

26, 2010.

J. A. Bucklew. Introduction to Rare Event Simulation. Springer, New York, 2003.
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